Reusing the Otsu threshold beyond segmentation

C. Vertan, C. Florea, L. Florea, Mihai-Sorin Badea
{"title":"Reusing the Otsu threshold beyond segmentation","authors":"C. Vertan, C. Florea, L. Florea, Mihai-Sorin Badea","doi":"10.1109/ISSCS.2017.8034908","DOIUrl":null,"url":null,"abstract":"The Otsu thresholding is a classical binarization method that partitions graylevel images according to a within-class variance minimization principle. The Otsu method is a particular case of the general Lloyd-Max optimal quantization. We propose the alternative use of Otsu/Lloyd thresholds, computed locally, as local features that describe the image content. This description can be used directly within a content-based image retrieval framework, or it can be reused in the definition of new Local Binary Pattern variants. Texture retrieval experiments show that the proposed approaches lead to performance improvement under specific constraints.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The Otsu thresholding is a classical binarization method that partitions graylevel images according to a within-class variance minimization principle. The Otsu method is a particular case of the general Lloyd-Max optimal quantization. We propose the alternative use of Otsu/Lloyd thresholds, computed locally, as local features that describe the image content. This description can be used directly within a content-based image retrieval framework, or it can be reused in the definition of new Local Binary Pattern variants. Texture retrieval experiments show that the proposed approaches lead to performance improvement under specific constraints.
在分割之外重用Otsu阈值
Otsu阈值分割是一种经典的二值化方法,它根据类内方差最小化原则对灰度图像进行分割。Otsu方法是一般Lloyd-Max最优量化的一个特例。我们建议使用局部计算的Otsu/Lloyd阈值作为描述图像内容的局部特征。该描述可以直接在基于内容的图像检索框架中使用,也可以在新的Local Binary Pattern变体的定义中重用。纹理检索实验表明,在特定的约束条件下,所提方法的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信