Have It Your Way: Generating Customized Log Data Sets with a Model-driven Simulation Testbed

Max Landauer, Florian Skopik, Markus Wurzenberger, Wolfgang Hotwagner, A. Rauber
{"title":"Have It Your Way: Generating Customized Log Data Sets with a Model-driven Simulation Testbed","authors":"Max Landauer, Florian Skopik, Markus Wurzenberger, Wolfgang Hotwagner, A. Rauber","doi":"10.1109/QRS51102.2020.00019","DOIUrl":null,"url":null,"abstract":"Evaluations of intrusion detection systems (IDS) require log data sets collected in realistic system environments. Ex-isting testbeds therefore offer user simulations and attack scenarios that target specific use-cases. However, not only does the preparation of such testbeds require domain knowledge and time-consuming work, but also maintenance and modifications for other use-cases involve high manual efforts and repeated execution of tasks. We therefore propose to generate testbeds for IDS evaluation using strategies from model-driven engineering. In particular, our approach models system infrastructure, simulated normal behavior, and attack scenarios as testbed-independent modules. A transformation engine then automatically generates arbitrary numbers of testbeds, each with a particular set of characteristics and capable of running in parallel. Our approach greatly improves configurability and flexibility of testbeds and allows to reuse components across multiple scenarios. We use our proof-of-concept implementation to generate a labeled data set for IDS evaluation that is published with this paper.","PeriodicalId":301814,"journal":{"name":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS51102.2020.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Evaluations of intrusion detection systems (IDS) require log data sets collected in realistic system environments. Ex-isting testbeds therefore offer user simulations and attack scenarios that target specific use-cases. However, not only does the preparation of such testbeds require domain knowledge and time-consuming work, but also maintenance and modifications for other use-cases involve high manual efforts and repeated execution of tasks. We therefore propose to generate testbeds for IDS evaluation using strategies from model-driven engineering. In particular, our approach models system infrastructure, simulated normal behavior, and attack scenarios as testbed-independent modules. A transformation engine then automatically generates arbitrary numbers of testbeds, each with a particular set of characteristics and capable of running in parallel. Our approach greatly improves configurability and flexibility of testbeds and allows to reuse components across multiple scenarios. We use our proof-of-concept implementation to generate a labeled data set for IDS evaluation that is published with this paper.
用你的方式:用模型驱动的仿真试验台生成定制的日志数据集
入侵检测系统(IDS)的评估需要在实际系统环境中收集日志数据集。因此,现有的测试平台提供了针对特定用例的用户模拟和攻击场景。然而,不仅准备这样的测试平台需要领域知识和耗时的工作,而且对其他用例的维护和修改也需要大量的手工工作和任务的重复执行。因此,我们建议使用模型驱动工程的策略为IDS评估生成测试平台。特别是,我们的方法将系统基础设施、模拟正常行为和攻击场景建模为独立于测试平台的模块。然后,转换引擎自动生成任意数量的试验台,每个试验台都具有一组特定的特征,并且能够并行运行。我们的方法极大地提高了测试平台的可配置性和灵活性,并允许跨多个场景重用组件。我们使用概念验证实现为IDS评估生成标记数据集,该数据集与本文一起发表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信