A Dynamic 3D Point Cloud Dataset for Immersive Applications

Yuan-Chun Sun, I-Chun Huang, Yuang Shi, Wei Tsang Ooi, Chun-Ying Huang, Cheng-Hsin Hsu
{"title":"A Dynamic 3D Point Cloud Dataset for Immersive Applications","authors":"Yuan-Chun Sun, I-Chun Huang, Yuang Shi, Wei Tsang Ooi, Chun-Ying Huang, Cheng-Hsin Hsu","doi":"10.1145/3587819.3592546","DOIUrl":null,"url":null,"abstract":"Motion estimation in a 3D point cloud sequence is a fundamental operation with many applications, including compression, error concealment, and temporal upscaling. While there have been multiple research contributions toward estimating the motion vector of points between frames, there is a lack of a dynamic 3D point cloud dataset with motion ground truth to benchmark against. In this paper, we present an open dynamic 3D point cloud dataset to fill this gap. Our dataset consists of synthetically generated objects with pre-determined motion patterns, allowing us to generate the motion vectors for the points. Our dataset contains nine objects in three categories (shape, avatar, and textile) with different animation patterns. We also provide semantic segmentation of each avatar object in the dataset. Our dataset can be used by researchers who need temporal information across frames. As an example, we present an evaluation of two motion estimation methods using our dataset.","PeriodicalId":330983,"journal":{"name":"Proceedings of the 14th Conference on ACM Multimedia Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th Conference on ACM Multimedia Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587819.3592546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Motion estimation in a 3D point cloud sequence is a fundamental operation with many applications, including compression, error concealment, and temporal upscaling. While there have been multiple research contributions toward estimating the motion vector of points between frames, there is a lack of a dynamic 3D point cloud dataset with motion ground truth to benchmark against. In this paper, we present an open dynamic 3D point cloud dataset to fill this gap. Our dataset consists of synthetically generated objects with pre-determined motion patterns, allowing us to generate the motion vectors for the points. Our dataset contains nine objects in three categories (shape, avatar, and textile) with different animation patterns. We also provide semantic segmentation of each avatar object in the dataset. Our dataset can be used by researchers who need temporal information across frames. As an example, we present an evaluation of two motion estimation methods using our dataset.
沉浸式应用的动态3D点云数据集
三维点云序列的运动估计是一项基本操作,有许多应用,包括压缩、错误隐藏和时间上尺度。虽然在估计帧之间点的运动矢量方面已经有了很多研究成果,但缺乏一个动态的3D点云数据集,其中包含了运动地面的真实情况来进行基准测试。在本文中,我们提出了一个开放的动态三维点云数据集来填补这一空白。我们的数据集由具有预先确定的运动模式的合成生成的对象组成,允许我们为点生成运动向量。我们的数据集包含三个类别(形状、头像和纺织品)的9个对象,它们具有不同的动画模式。我们还提供了数据集中每个头像对象的语义分割。我们的数据集可以被需要跨帧时间信息的研究人员使用。作为一个例子,我们使用我们的数据集对两种运动估计方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信