Coordinated Frequency Control Strategy for VSC-HVDC-Connected Wind Farm and Battery Energy Storage System

Chung-Han Lin, Yuan-Kang Wu
{"title":"Coordinated Frequency Control Strategy for VSC-HVDC-Connected Wind Farm and Battery Energy Storage System","authors":"Chung-Han Lin, Yuan-Kang Wu","doi":"10.1109/IAS54023.2022.9940064","DOIUrl":null,"url":null,"abstract":"With the increasing penetration of renewable energy, power system inertia is reduced; thus, frequency stability faces tremendous challenges. Offshore wind farms (WFs) are often integrated to the grid through a voltage-source-converter-based high-voltage direct current (VSC-HVDC) transmission. However, traditional WFs cannot provide frequency support owing to the decoupling characteristics of VSC-HVDC. Modern WFs may support frequency regulation, but the recovery of rotor speeds of wind turbines (WTs) would cause a considerable second frequency drop (SFD). To resolve these problems, this paper presents a coordinated control strategy for a VSC-HVDC-connected WF with a battery energy storage system (BESS) for providing frequency support. The proposed strategy enhances the synthetic inertia by allowing WFs and BESS to participate in frequency regulation, in which the VSC-HVDC transmission supports frequency regulation by regulating its DC-link voltage, and BESS provides the required power during the rotor-speed recovery of WTs. Thus, SFD can be prevented and frequency deviation is minimized. In this study, the case study that considers the outage of synchronous generator and variable wind-speed scenario was conducted in PSCAD/EMTDC. The simulation results verify the effectiveness and the robustness of the proposed control strategy and demonstrate the superiority of the proposed strategy over other existing strategies.","PeriodicalId":193587,"journal":{"name":"2022 IEEE Industry Applications Society Annual Meeting (IAS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Industry Applications Society Annual Meeting (IAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS54023.2022.9940064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the increasing penetration of renewable energy, power system inertia is reduced; thus, frequency stability faces tremendous challenges. Offshore wind farms (WFs) are often integrated to the grid through a voltage-source-converter-based high-voltage direct current (VSC-HVDC) transmission. However, traditional WFs cannot provide frequency support owing to the decoupling characteristics of VSC-HVDC. Modern WFs may support frequency regulation, but the recovery of rotor speeds of wind turbines (WTs) would cause a considerable second frequency drop (SFD). To resolve these problems, this paper presents a coordinated control strategy for a VSC-HVDC-connected WF with a battery energy storage system (BESS) for providing frequency support. The proposed strategy enhances the synthetic inertia by allowing WFs and BESS to participate in frequency regulation, in which the VSC-HVDC transmission supports frequency regulation by regulating its DC-link voltage, and BESS provides the required power during the rotor-speed recovery of WTs. Thus, SFD can be prevented and frequency deviation is minimized. In this study, the case study that considers the outage of synchronous generator and variable wind-speed scenario was conducted in PSCAD/EMTDC. The simulation results verify the effectiveness and the robustness of the proposed control strategy and demonstrate the superiority of the proposed strategy over other existing strategies.
vsc - hvdc连接风电场与电池储能系统的协调频率控制策略
随着可再生能源渗透率的提高,电力系统惯性减小;因此,频率稳定性面临着巨大的挑战。海上风电场(WFs)通常通过基于电压源转换器的高压直流(vcs - hvdc)传输集成到电网中。然而,由于直流直流的解耦特性,传统WFs无法提供频率支持。现代WFs可能支持频率调节,但风力涡轮机(WTs)转子速度的恢复将导致相当大的二次频率下降(SFD)。为了解决这些问题,本文提出了一种由电池储能系统(BESS)提供频率支持的vsc - hvdc连接WF的协调控制策略。提出的策略通过允许WFs和BESS参与频率调节来增强综合惯性,其中VSC-HVDC传输通过调节直流链路电压来支持频率调节,BESS在WTs的转子转速恢复过程中提供所需的功率。因此,可以防止SFD和频率偏差最小化。本研究在PSCAD/EMTDC中进行了考虑同步发电机停电和变风速场景的案例研究。仿真结果验证了所提控制策略的有效性和鲁棒性,证明了所提控制策略相对于现有控制策略的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信