Semantic Segmentation of River Video for Efficient River Surveillance System

Haruki Inoue, Takafumi Katayama, Tian Song, T. Shimamoto
{"title":"Semantic Segmentation of River Video for Efficient River Surveillance System","authors":"Haruki Inoue, Takafumi Katayama, Tian Song, T. Shimamoto","doi":"10.1109/ITC-CSCC58803.2023.10212938","DOIUrl":null,"url":null,"abstract":"Development of an efficient river monitoring system with state-of-the-art AI technology becomes more and more important. Nevertheless, training a network requires a large amount of annotated datasets which is an exhausted work. In this work, an original dataset is generated by modular interactive video object segmentation(MiVOS) including daytime and nighttime surveillance video of Inoo River in Tokushima. Then, an efficient segmentation tool named Hyperseg is trained by the dataset. The semantic segmentation results of the river video show that over 0.8 of IoU is obtained on the classes of bridges, rivers, and banks. It is considered an acceptable segmentation performance to estimate the water level of the river to construct a smart river surveillance system.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Development of an efficient river monitoring system with state-of-the-art AI technology becomes more and more important. Nevertheless, training a network requires a large amount of annotated datasets which is an exhausted work. In this work, an original dataset is generated by modular interactive video object segmentation(MiVOS) including daytime and nighttime surveillance video of Inoo River in Tokushima. Then, an efficient segmentation tool named Hyperseg is trained by the dataset. The semantic segmentation results of the river video show that over 0.8 of IoU is obtained on the classes of bridges, rivers, and banks. It is considered an acceptable segmentation performance to estimate the water level of the river to construct a smart river surveillance system.
高效河流监测系统中河流视频的语义分割
利用最先进的人工智能技术开发高效的河流监测系统变得越来越重要。然而,训练一个网络需要大量带注释的数据集,这是一项耗费精力的工作。本研究采用模块化交互式视频对象分割(MiVOS)技术生成了一个原始数据集,包括德岛伊诺河的白天和夜间监控视频。然后,利用该数据集训练出一种高效的分割工具Hyperseg。河流视频的语义分割结果表明,在桥梁、河流和河岸类上获得了超过0.8的IoU。估计河流水位是构建智能河流监测系统的一种可接受的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信