Machine Pedagogy – Classification and Statistical Analysis of Educational Data

N. Kumari
{"title":"Machine Pedagogy – Classification and Statistical Analysis of Educational Data","authors":"N. Kumari","doi":"10.23883/ijrter.2019.5044.umkga","DOIUrl":null,"url":null,"abstract":"Machine Learning is the science to train the computer systems learning from the past experiences in the form of Data. Machine Learning and Artificial Intelligence can have significant impact in our Education System . This paper discusses how classification Machine learning algorithms paves the way for building a Machine Learning Model for further enhancing the interaction between teachers and students. Statistical test Pearson Bivariate Correlation , Linear Regression helped in further predictions in making Learning Model . The model prediction have been compared on the basis of performance measures Mean absolute error , Mean Squared error , Gradient Descent. Keywords— Classification , Regression , Information and Communication Technology , Train set , Test Set , Probablity. Nomenclature ICT Information and Communication Technology ML Machine Learning MAP Maximum Probability","PeriodicalId":143099,"journal":{"name":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23883/ijrter.2019.5044.umkga","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learning is the science to train the computer systems learning from the past experiences in the form of Data. Machine Learning and Artificial Intelligence can have significant impact in our Education System . This paper discusses how classification Machine learning algorithms paves the way for building a Machine Learning Model for further enhancing the interaction between teachers and students. Statistical test Pearson Bivariate Correlation , Linear Regression helped in further predictions in making Learning Model . The model prediction have been compared on the basis of performance measures Mean absolute error , Mean Squared error , Gradient Descent. Keywords— Classification , Regression , Information and Communication Technology , Train set , Test Set , Probablity. Nomenclature ICT Information and Communication Technology ML Machine Learning MAP Maximum Probability
机器教育学。教育数据的分类和统计分析
机器学习是训练计算机系统以数据的形式从过去的经验中学习的科学。机器学习和人工智能可以对我们的教育系统产生重大影响。本文讨论了分类机器学习算法如何为构建机器学习模型铺平道路,从而进一步增强师生之间的互动。统计检验皮尔逊双变量相关,线性回归有助于进一步预测学习模型。根据平均绝对误差、均方误差、梯度下降等性能指标对模型的预测结果进行了比较。关键词:分类,回归,信息通信技术,训练集,测试集,概率。术语ICT信息与通信技术ML机器学习MAP最大概率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信