A Tighter Correlation Lower Bound for Quasi-Complementary Sequence Sets with Low Correlation Zone

Bing Liu, Zhengchun Zhou, P. Udaya
{"title":"A Tighter Correlation Lower Bound for Quasi-Complementary Sequence Sets with Low Correlation Zone","authors":"Bing Liu, Zhengchun Zhou, P. Udaya","doi":"10.1109/IWSDA46143.2019.8966101","DOIUrl":null,"url":null,"abstract":"Inspired by Levenshtein’s idea, we introduce the low correlation zone to the weighted mean square aperiodic correlation. Then we derive a lower bound for quasi-complementary sequence sets with low correlation zone (LCZ-QCSS). We discuss the conditions of tightness for the proposed bound. It turns out that the proposed bound is tighter than Liu-Guan-Ng-Chen bound for LCZ-QCSS under some conditions.","PeriodicalId":326214,"journal":{"name":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA46143.2019.8966101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Inspired by Levenshtein’s idea, we introduce the low correlation zone to the weighted mean square aperiodic correlation. Then we derive a lower bound for quasi-complementary sequence sets with low correlation zone (LCZ-QCSS). We discuss the conditions of tightness for the proposed bound. It turns out that the proposed bound is tighter than Liu-Guan-Ng-Chen bound for LCZ-QCSS under some conditions.
具有低相关带的拟互补序列集的紧相关下界
受Levenshtein思想的启发,我们在加权均方非周期相关中引入了低相关区。然后给出了具有低相关带的拟互补序列集(LCZ-QCSS)的下界。我们讨论了所提界的紧性条件。结果表明,在某些条件下,所提出的界比LCZ-QCSS的Liu-Guan-Ng-Chen界更紧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信