Radiomics to Predict Response to Neoadjuvant Chemotherapy in Rectal Cancer: Influence of Simultaneous Feature Selection and Classifier Optimization

S. Rosati, C. M. Gianfreda, G. Balestra, V. Giannini, S. Mazzetti, D. Regge
{"title":"Radiomics to Predict Response to Neoadjuvant Chemotherapy in Rectal Cancer: Influence of Simultaneous Feature Selection and Classifier Optimization","authors":"S. Rosati, C. M. Gianfreda, G. Balestra, V. Giannini, S. Mazzetti, D. Regge","doi":"10.1109/LSC.2018.8572194","DOIUrl":null,"url":null,"abstract":"According to the guidelines, patients with locally advanced colorectal cancer undergo neoadjuvant chemotherapy. However, response to therapy is reached only up to 30% of cases. Therefore, it would be important to predict response to therapy before treatment. In this study, we demonstrated that the simultaneous optimization of feature subset and classifier parameters on different imaging datasets (T2w, DWI and PET) could improve classification performance. On a dataset of 51 patients (21 responders, 30 non responders), we obtained an accuracy of 90%, 84% and 76% using three optimized SVM classifiers fed with selected features from PET, T2w and ADC images, respectively.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

According to the guidelines, patients with locally advanced colorectal cancer undergo neoadjuvant chemotherapy. However, response to therapy is reached only up to 30% of cases. Therefore, it would be important to predict response to therapy before treatment. In this study, we demonstrated that the simultaneous optimization of feature subset and classifier parameters on different imaging datasets (T2w, DWI and PET) could improve classification performance. On a dataset of 51 patients (21 responders, 30 non responders), we obtained an accuracy of 90%, 84% and 76% using three optimized SVM classifiers fed with selected features from PET, T2w and ADC images, respectively.
放射组学预测直肠癌新辅助化疗反应:同时特征选择和分类器优化的影响
根据指南,局部晚期结直肠癌患者接受新辅助化疗。然而,只有高达30%的病例对治疗有反应。因此,在治疗前预测对治疗的反应是很重要的。在本研究中,我们证明了在不同的成像数据集(T2w, DWI和PET)上同时优化特征子集和分类器参数可以提高分类性能。在51例患者(21例有反应者,30例无反应者)的数据集上,我们使用三种优化的SVM分类器分别从PET、T2w和ADC图像中选择特征,获得了90%、84%和76%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信