Improved interpolation kernels for super resolution algorithms

P. Rasti, O. Orlova, G. Tamberg, C. Ozcinar, Kamal Nasrollahi, T. Moeslund, G. Anbarjafari
{"title":"Improved interpolation kernels for super resolution algorithms","authors":"P. Rasti, O. Orlova, G. Tamberg, C. Ozcinar, Kamal Nasrollahi, T. Moeslund, G. Anbarjafari","doi":"10.1109/IPTA.2016.7820980","DOIUrl":null,"url":null,"abstract":"Super resolution (SR) algorithms are widely used in forensics investigations to enhance the resolution of images captured by surveillance cameras. Such algorithms usually use a common interpolation algorithm to generate an initial guess for the desired high resolution (HR) image. This initial guess is usually tuned through different methods, like learning-based or fusion-based methods, to converge the initial guess towards the desired HR output. In this work, it is shown that SR algorithms can result in better performance if more sophisticated kernels than the simple conventional ones are used for producing the initial guess. The contribution of this work is to introduce such a set of kernels which can be used in the context of SR. The quantitative and qualitative results on many natural, facial and iris images show the superiority of the generated HR images over two state-of-the-art SR algorithms when their original interpolation kernel is replaced by the ones introduced in this work.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"37 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Super resolution (SR) algorithms are widely used in forensics investigations to enhance the resolution of images captured by surveillance cameras. Such algorithms usually use a common interpolation algorithm to generate an initial guess for the desired high resolution (HR) image. This initial guess is usually tuned through different methods, like learning-based or fusion-based methods, to converge the initial guess towards the desired HR output. In this work, it is shown that SR algorithms can result in better performance if more sophisticated kernels than the simple conventional ones are used for producing the initial guess. The contribution of this work is to introduce such a set of kernels which can be used in the context of SR. The quantitative and qualitative results on many natural, facial and iris images show the superiority of the generated HR images over two state-of-the-art SR algorithms when their original interpolation kernel is replaced by the ones introduced in this work.
改进的插值核超分辨率算法
超分辨率(SR)算法被广泛应用于法医调查中,以提高监控摄像机捕获的图像的分辨率。这种算法通常使用一种常见的插值算法来生成期望的高分辨率图像的初始猜测。这个初始猜测通常通过不同的方法(如基于学习或基于融合的方法)进行调整,以将初始猜测收敛到所需的HR输出。在这项工作中,研究表明,如果使用比简单的常规核更复杂的核来产生初始猜测,SR算法可以产生更好的性能。这项工作的贡献在于引入了一组可用于SR上下文的核。在许多自然,面部和虹膜图像上的定量和定性结果表明,当它们的原始插值核被本工作中引入的核所取代时,生成的HR图像优于两种最先进的SR算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信