A Novel Experimental Study to Enhance the Attentional State using EEG Signals

Jagadish Bandaru, Rajalakshmi Pachumutthu
{"title":"A Novel Experimental Study to Enhance the Attentional State using EEG Signals","authors":"Jagadish Bandaru, Rajalakshmi Pachumutthu","doi":"10.1109/SAS48726.2020.9220056","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a simple low-complex classification framework for the cognitive enhancement with the sustained attention stimuli using Electroencephalography (EEG) signals. The visual stimuli comprise of four face images: two happy (one male and one female) and two unhappy (one male and one female). The neuronal response is decoded using a combination of discrete wavelet transform (DWT) and ensemble classifier. The features are extracted by decomposition of recorded EEG signals using Daubechies wavelet filter (db4) and used the statistical methods such as the absolute mean value, power, and standard deviation for classification. The proposed methodology is validated on in-house recorded visual attention EEG (VA-EEG) dataset using six subjects (three males, three females) and evaluated the performance on six binary combinations of facial stimuli. The performance results show that the binary combination of male happy (MH) and female happy (FH) facial stimuli aids in cognitive enhancement for the people suffering from cognitive symptoms. The proposed low-complex feature extraction classification framework obtained a mean classification accuracy (CA) and a mean kappa value of 86.58% and 0.72, respectively.","PeriodicalId":223737,"journal":{"name":"2020 IEEE Sensors Applications Symposium (SAS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS48726.2020.9220056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a simple low-complex classification framework for the cognitive enhancement with the sustained attention stimuli using Electroencephalography (EEG) signals. The visual stimuli comprise of four face images: two happy (one male and one female) and two unhappy (one male and one female). The neuronal response is decoded using a combination of discrete wavelet transform (DWT) and ensemble classifier. The features are extracted by decomposition of recorded EEG signals using Daubechies wavelet filter (db4) and used the statistical methods such as the absolute mean value, power, and standard deviation for classification. The proposed methodology is validated on in-house recorded visual attention EEG (VA-EEG) dataset using six subjects (three males, three females) and evaluated the performance on six binary combinations of facial stimuli. The performance results show that the binary combination of male happy (MH) and female happy (FH) facial stimuli aids in cognitive enhancement for the people suffering from cognitive symptoms. The proposed low-complex feature extraction classification framework obtained a mean classification accuracy (CA) and a mean kappa value of 86.58% and 0.72, respectively.
利用脑电图信号增强注意状态的新实验研究
本文利用脑电图(EEG)信号对持续注意刺激下的认知增强提出了一个简单、简单的分类框架。视觉刺激包括四张人脸图像:两张开心的(一男一女)和两张不开心的(一男一女)。采用离散小波变换(DWT)和集成分类器对神经元响应进行解码。采用Daubechies小波滤波(db4)对记录的脑电信号进行分解提取特征,并采用绝对均值、幂、标准差等统计方法进行分类。在六名受试者(三男三女)的视觉注意脑电图(VA-EEG)数据集上验证了所提出的方法,并评估了六种二元面部刺激组合的性能。表现结果表明,男性快乐(MH)和女性快乐(FH)面部刺激的二元组合有助于认知症状患者的认知增强。所提出的低复杂度特征提取分类框架的平均分类准确率(CA)为86.58%,平均kappa值为0.72。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信