Web Usage Pattern Detection Using Cohesive Markov Model With Apriori Algorithm

Vinukumar Luckose, Jothish Chembath, Joe Arun Raja Ponnusamy, Sakshi Sharma, Pritpal Kaur, Sajitha Smiley
{"title":"Web Usage Pattern Detection Using Cohesive Markov Model With Apriori Algorithm","authors":"Vinukumar Luckose, Jothish Chembath, Joe Arun Raja Ponnusamy, Sakshi Sharma, Pritpal Kaur, Sajitha Smiley","doi":"10.1109/i2cacis54679.2022.9815465","DOIUrl":null,"url":null,"abstract":"Web server maintains the essential user log files, recording every request to it. Web log is a record of events which includes all the user details from the time the web visitor initiated the session to the end of the session. The web usage pattern discovery to identify different states of the user access behavior on web. The design of web recommender system using a context-aware Cohesive Markov Model and Apriori clustering is proposed. The prediction rate of proposed algorithm is higher than conventional Markov model.","PeriodicalId":332297,"journal":{"name":"2022 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/i2cacis54679.2022.9815465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Web server maintains the essential user log files, recording every request to it. Web log is a record of events which includes all the user details from the time the web visitor initiated the session to the end of the session. The web usage pattern discovery to identify different states of the user access behavior on web. The design of web recommender system using a context-aware Cohesive Markov Model and Apriori clustering is proposed. The prediction rate of proposed algorithm is higher than conventional Markov model.
基于内聚马尔可夫模型和Apriori算法的Web使用模式检测
Web服务器维护重要的用户日志文件,记录对它的每个请求。Web日志是事件的记录,其中包括从Web访问者启动会话到会话结束的所有用户详细信息。web使用模式发现,识别用户在web上访问行为的不同状态。提出了一种基于上下文感知的内聚马尔可夫模型和Apriori聚类的web推荐系统设计方法。该算法的预测率高于传统的马尔可夫模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信