Few-shot Object Detection via Refining Eigenspace

Yan Ouyang, Xinqing Wang, Honghui Xu, Ruizhe Hu, Faming Shao, Dong Wang
{"title":"Few-shot Object Detection via Refining Eigenspace","authors":"Yan Ouyang, Xinqing Wang, Honghui Xu, Ruizhe Hu, Faming Shao, Dong Wang","doi":"10.1145/3581807.3581820","DOIUrl":null,"url":null,"abstract":"Few-shot object detection (FSOD) aims to retain the performance of detector when only given scarce annotated instances. We reckon that its difficulty lies in the fact that the scare positive samples restrict the accurate construction of the eigenspace of involved categories. In this paper, we proposed a novel FSOD detector based on refining the eigenspace, which is implemented through a pure positive augmentation, a full feature mining module and a modified loss function. The pure positive augmentation expands the quantity and enriches the scale distribution of positive samples, inhibiting the expansion of negative samples. The full feature mining module enables the model to mining more information about objects. The modified loss function drives prediction results closer to ground truths. We apply these two improvements to YOLOv4, the representative of one-stage detector, which is termed YOLOv4-FS. On PASCAL VOC and MS COCO datasets, our YOLOv4-FS achieves competitive performance compared with existing progressive detectors.","PeriodicalId":292813,"journal":{"name":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581807.3581820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Few-shot object detection (FSOD) aims to retain the performance of detector when only given scarce annotated instances. We reckon that its difficulty lies in the fact that the scare positive samples restrict the accurate construction of the eigenspace of involved categories. In this paper, we proposed a novel FSOD detector based on refining the eigenspace, which is implemented through a pure positive augmentation, a full feature mining module and a modified loss function. The pure positive augmentation expands the quantity and enriches the scale distribution of positive samples, inhibiting the expansion of negative samples. The full feature mining module enables the model to mining more information about objects. The modified loss function drives prediction results closer to ground truths. We apply these two improvements to YOLOv4, the representative of one-stage detector, which is termed YOLOv4-FS. On PASCAL VOC and MS COCO datasets, our YOLOv4-FS achieves competitive performance compared with existing progressive detectors.
基于特征空间细化的少镜头目标检测
少射目标检测(FSOD)的目的是在给定少量注释实例的情况下保持检测器的性能。我们认为,它的困难在于,大量的正样本限制了所涉及类别特征空间的准确构造。本文提出了一种基于特征空间细化的FSOD检测器,该检测器通过纯正增、全特征挖掘模块和改进的损失函数实现。纯正扩增扩大了正样本的数量,丰富了正样本的尺度分布,抑制了负样本的扩张。完整的特性挖掘模块使模型能够挖掘关于对象的更多信息。修正后的损失函数使预测结果更接近基本事实。我们将这两个改进应用于一级检测器的代表YOLOv4,称为YOLOv4- fs。在PASCAL VOC和MS COCO数据集上,我们的YOLOv4-FS与现有的渐进式检测器相比具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信