Robust Color Correction for Preserving Spatial Variations within Photographs

D. S. Dhillon, Parisha Joshi, Jessica R. Baron, E. Patterson
{"title":"Robust Color Correction for Preserving Spatial Variations within Photographs","authors":"D. S. Dhillon, Parisha Joshi, Jessica R. Baron, E. Patterson","doi":"10.1145/3588028.3603681","DOIUrl":null,"url":null,"abstract":"Figure 1: A reference colorchart (left image) is commonly used for color correction which is an ill-posed problem. State-of-the-art root-polynomial regressionmethod reducesCIE XYZ or linear-RGB color differences for the transformed reference blocks in themean-sense. It improves significantly with the increasing regression order as CIEΔE is seen to drop with the increasing order. However, it does not account for spatial variations and produces serious artifacts as demonstrated here (center image). Proposed method improves color correction while preserving spatial variations, white-balancing appropriately and not over-damping the luminance as reported by Varghese et al. for their CIE_ΔE minimizing method.","PeriodicalId":113397,"journal":{"name":"ACM SIGGRAPH 2023 Posters","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2023 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3588028.3603681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Figure 1: A reference colorchart (left image) is commonly used for color correction which is an ill-posed problem. State-of-the-art root-polynomial regressionmethod reducesCIE XYZ or linear-RGB color differences for the transformed reference blocks in themean-sense. It improves significantly with the increasing regression order as CIEΔE is seen to drop with the increasing order. However, it does not account for spatial variations and produces serious artifacts as demonstrated here (center image). Proposed method improves color correction while preserving spatial variations, white-balancing appropriately and not over-damping the luminance as reported by Varghese et al. for their CIE_ΔE minimizing method.
保留照片空间变化的鲁棒色彩校正
图1:参考色图(左图)通常用于色彩校正,这是一个不适定问题。最先进的根多项式回归方法减少了cie XYZ或线性rgb的颜色差异为转换后的参考块在平均意义上。随着回归阶数的增加,它显著改善,因为CIEΔE随着回归阶数的增加而下降。然而,它没有考虑到空间变化,并产生了严重的伪影,如图所示(中图)。所提出的方法改善了色彩校正,同时保留了空间变化,适当的白平衡,而不是过度衰减亮度,正如Varghese等人在CIE_ΔE最小化方法中所报道的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信