Evolutionary Computation Paradigm to Determine Deep Neural Networks Architectures

R. Ivanescu, Smaranda Belciug, Andrei Nascu, M. Serbanescu, D. Iliescu
{"title":"Evolutionary Computation Paradigm to Determine Deep Neural Networks Architectures","authors":"R. Ivanescu, Smaranda Belciug, Andrei Nascu, M. Serbanescu, D. Iliescu","doi":"10.15837/ijccc.2022.5.4886","DOIUrl":null,"url":null,"abstract":"\n\n\nImage classification is usually done using deep learning algorithms. Deep learning architectures are set deterministically. The aim of this paper is to propose an evolutionary computation paradigm that optimises a deep learning neural network’s architecture. A set of chromosomes are randomly generated, after which selection, recombination, and mutation are applied. At each generation the fittest chromosomes are kept. The best chromosome from the last generation determines the deep learning architecture. We have tested our method on a second trimester fetal morphology database. The proposed model is statistically compared with DenseNet201 and ResNet50, proving its competitiveness.\n\n\n","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2022.5.4886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Image classification is usually done using deep learning algorithms. Deep learning architectures are set deterministically. The aim of this paper is to propose an evolutionary computation paradigm that optimises a deep learning neural network’s architecture. A set of chromosomes are randomly generated, after which selection, recombination, and mutation are applied. At each generation the fittest chromosomes are kept. The best chromosome from the last generation determines the deep learning architecture. We have tested our method on a second trimester fetal morphology database. The proposed model is statistically compared with DenseNet201 and ResNet50, proving its competitiveness.
确定深度神经网络架构的进化计算范式
图像分类通常使用深度学习算法完成。深度学习架构是确定设置的。本文的目的是提出一种优化深度学习神经网络架构的进化计算范式。一组染色体随机生成,然后进行选择、重组和突变。每一代都保留最适合的染色体。上一代的最佳染色体决定了深度学习架构。我们已经在妊娠中期胎儿形态学数据库中测试了我们的方法。与DenseNet201和ResNet50进行了统计比较,证明了该模型的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信