Nondestructive Testing Image Segmentation based on Neutrosophic Set and Bat Algorithm

S. Dhar, M. Kundu, Hiranmoy Roy
{"title":"Nondestructive Testing Image Segmentation based on Neutrosophic Set and Bat Algorithm","authors":"S. Dhar, M. Kundu, Hiranmoy Roy","doi":"10.1109/ICRCICN50933.2020.9295965","DOIUrl":null,"url":null,"abstract":"Industry uses nondestructive testing (NDT) to detect a fault in metal without damaging it. Image segmentation based technique for detecting the fault from an NDT image is a difficult task. The difficulty emerges due to uncertainties in the NDT image pattern. To segment an NDT image efficiently the uncertainties should be handled efficiently. In this paper, we present a novel technique to segment an NDT image by handling the uncertainties based on neutrosophic set(NS). The NS manages the uncertainties by representing an image into a true, false, and indeterminate subset. For proper NS value representation, two operations α – mean and β – enhancement are essential. For finding the proper values of α and β depending on the image statistics we utilize the bat algorithm(BA). The algorithm finds the optimal values of α and β for managing the uncertainties properly. We find that in terms of performance the proposed method is quite satisfying in comparison to the latest methods.","PeriodicalId":138966,"journal":{"name":"2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN50933.2020.9295965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Industry uses nondestructive testing (NDT) to detect a fault in metal without damaging it. Image segmentation based technique for detecting the fault from an NDT image is a difficult task. The difficulty emerges due to uncertainties in the NDT image pattern. To segment an NDT image efficiently the uncertainties should be handled efficiently. In this paper, we present a novel technique to segment an NDT image by handling the uncertainties based on neutrosophic set(NS). The NS manages the uncertainties by representing an image into a true, false, and indeterminate subset. For proper NS value representation, two operations α – mean and β – enhancement are essential. For finding the proper values of α and β depending on the image statistics we utilize the bat algorithm(BA). The algorithm finds the optimal values of α and β for managing the uncertainties properly. We find that in terms of performance the proposed method is quite satisfying in comparison to the latest methods.
基于嗜中性集和Bat算法的无损检测图像分割
工业使用无损检测(NDT)在不损坏金属的情况下检测金属的故障。基于图像分割的无损检测图像故障检测技术是一个难点。由于无损检测图像模式的不确定性,出现了困难。为了有效分割无损检测图像,必须对不确定度进行有效处理。本文提出了一种基于嗜中性集(NS)处理不确定度的无损检测图像分割方法。NS通过将图像表示为真、假和不确定子集来管理不确定性。为了获得正确的NS值表示,必须进行α -均值和β -增强两种操作。为了根据图像统计找到合适的α和β值,我们使用蝙蝠算法(BA)。该算法找到α和β的最优值,以适当地管理不确定性。我们发现,就性能而言,与最新的方法相比,所提出的方法是相当令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信