A method for solving the algebraic Riccati and Lyapunov equations using higher order matrix sign function algorithms

M. Hasan, Jiann-Shiou Yang, A. Hasan
{"title":"A method for solving the algebraic Riccati and Lyapunov equations using higher order matrix sign function algorithms","authors":"M. Hasan, Jiann-Shiou Yang, A. Hasan","doi":"10.1109/ACC.1999.786463","DOIUrl":null,"url":null,"abstract":"A set of higher order rational fixed point functions for computing the matrix sign function of complex matrices is developed. Our main focus is the representation of these rational functions in partial fraction form which in turn allows for a parallel implementation of the matrix sign function algorithms. The matrix sign function is then used to compute the positive semidefinite solution of the algebraic Riccati and Lyapunov matrix equations. It is also suggested that the proposed methods can be used to compute the invariant subspaces of a nonsingular matrix in any half plane. The performance of these methods is demonstrated by several examples.","PeriodicalId":441363,"journal":{"name":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1999.786463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A set of higher order rational fixed point functions for computing the matrix sign function of complex matrices is developed. Our main focus is the representation of these rational functions in partial fraction form which in turn allows for a parallel implementation of the matrix sign function algorithms. The matrix sign function is then used to compute the positive semidefinite solution of the algebraic Riccati and Lyapunov matrix equations. It is also suggested that the proposed methods can be used to compute the invariant subspaces of a nonsingular matrix in any half plane. The performance of these methods is demonstrated by several examples.
用高阶矩阵符号函数算法求解代数Riccati和Lyapunov方程的方法
给出了计算复矩阵的矩阵符号函数的一组高阶有理不动点函数。我们的主要重点是这些有理函数的部分分式形式的表示,这反过来又允许矩阵符号函数算法的并行实现。然后利用矩阵符号函数计算代数Riccati和Lyapunov矩阵方程的正半定解。该方法可用于计算任意半平面上非奇异矩阵的不变子空间。通过几个算例验证了这些方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信