Multibump trajectories of adiabatically perturbed periodic Hamiltonian systems with pitchfork bifurcations

A. Ivanov, P. Panteleeva
{"title":"Multibump trajectories of adiabatically perturbed periodic Hamiltonian systems with pitchfork bifurcations","authors":"A. Ivanov, P. Panteleeva","doi":"10.1109/DD46733.2019.9016558","DOIUrl":null,"url":null,"abstract":"We study a $1\\tfrac{1}{2}$-degrees of freedom Hamiltonian system with a potential $U(x,\\varepsilon t) = \\tfrac{1}{2}(\\varphi (\\varepsilon t)x^2 - x^4)$ slowly varying with time. It is assumed that the factor φ(τ) is a periodic function with simple zeroes on its period. Using WKB-method together with a modification of the Melnikov method, we prove that in the adiabatic limit a cascade of bifurcations, occuring when the factor φ passes through the zero value, leads to the existence of transversal homoclinic intersections and multibump trajectories of the system.","PeriodicalId":319575,"journal":{"name":"2019 Days on Diffraction (DD)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD46733.2019.9016558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a $1\tfrac{1}{2}$-degrees of freedom Hamiltonian system with a potential $U(x,\varepsilon t) = \tfrac{1}{2}(\varphi (\varepsilon t)x^2 - x^4)$ slowly varying with time. It is assumed that the factor φ(τ) is a periodic function with simple zeroes on its period. Using WKB-method together with a modification of the Melnikov method, we prove that in the adiabatic limit a cascade of bifurcations, occuring when the factor φ passes through the zero value, leads to the existence of transversal homoclinic intersections and multibump trajectories of the system.
具有干草叉分叉的绝热摄动周期哈密顿系统的多碰撞轨迹
我们研究了一个具有位势$U(x,\varepsilon t) = \tfrac{1}{2}(\varphi (\varepsilon t)x^2 - x^4)$随时间缓慢变化的$1\tfrac{1}{2}$ -自由度哈密顿系统。假设因子φ(τ)是一个周期为简单零的周期函数。利用wkb -方法和对Melnikov方法的一种修正,证明了在绝热极限下,当因子φ通过零值时,系统会出现一连串的分岔,从而导致系统存在横向同斜交和多碰撞轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信