Learning perceptual texture similarity and relative attributes from computational features

Jianwen Lou, Lin Qi, Junyu Dong, Hui Yu, G. Zhong
{"title":"Learning perceptual texture similarity and relative attributes from computational features","authors":"Jianwen Lou, Lin Qi, Junyu Dong, Hui Yu, G. Zhong","doi":"10.1109/IJCNN.2016.7727516","DOIUrl":null,"url":null,"abstract":"Previous work has shown that perceptual texture similarity and relative attributes cannot be well described by computational features. In this paper, we propose to predict human's visual perception of texture images by learning a non-linear mapping from computational feature space to perceptual space. Hand-crafted features and deep features, which were successfully applied in texture classification tasks, were extracted and used to train Random Forest and rankSVM models against perceptual data from psychophysical experiments. Three texture datasets were used to test our proposed method and the experiments show that the predictions of such learnt models are in high correlation with human's results.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Previous work has shown that perceptual texture similarity and relative attributes cannot be well described by computational features. In this paper, we propose to predict human's visual perception of texture images by learning a non-linear mapping from computational feature space to perceptual space. Hand-crafted features and deep features, which were successfully applied in texture classification tasks, were extracted and used to train Random Forest and rankSVM models against perceptual data from psychophysical experiments. Three texture datasets were used to test our proposed method and the experiments show that the predictions of such learnt models are in high correlation with human's results.
从计算特征中学习感知纹理相似度和相关属性
以前的工作表明,感知纹理相似性和相对属性不能很好地描述计算特征。本文提出通过学习从计算特征空间到感知空间的非线性映射来预测人类对纹理图像的视觉感知。提取成功应用于纹理分类任务的手工特征和深度特征,并将其用于针对心理物理实验的感知数据训练Random Forest和rankSVM模型。用三个纹理数据集对该方法进行了测试,实验表明,该学习模型的预测结果与人类的预测结果有较高的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信