R. Cole, M. Crochemore, Z. Galil, L. Gąsieniec, R. Hariharan, S. Muthukrishnan, Kunsoo Park, W. Rytter
{"title":"Optimally fast parallel algorithms for preprocessing and pattern matching in one and two dimensions","authors":"R. Cole, M. Crochemore, Z. Galil, L. Gąsieniec, R. Hariharan, S. Muthukrishnan, Kunsoo Park, W. Rytter","doi":"10.1109/SFCS.1993.366862","DOIUrl":null,"url":null,"abstract":"All algorithms below are optimal alphabet-independent parallel CRCW PRAM algorithms. In one dimension: Given a pattern string of length m for the string-matching problem, we design an algorithm that computes a deterministic sample of a sufficiently long substring in constant time. This problem used to be a bottleneck in the pattern preprocessing for one- and two-dimensional pattern matching. The best previous time bound was O(log/sup 2/ m/log log m). We use this algorithm to obtain the following results. 1. Improving the preprocessing of the constant-time text search algorithm from O(log/sup 2/ m/log log m) to n(log log m), which is now best possible. 2. A constant-time deterministic string-matching algorithm in the case that the text length n satisfies n=/spl Omega/(m/sup 1+/spl epsiv//) for a constant /spl epsiv/>0. 3. A simple probabilistic string-matching algorithm that has constant time with high probability for random input. 4. A constant expected time Las-Vegas algorithm for computing the period of the pattern and all witnesses and thus string matching itself, solving the main open problem remaining in string matching.<<ETX>>","PeriodicalId":253303,"journal":{"name":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1993.366862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59
Abstract
All algorithms below are optimal alphabet-independent parallel CRCW PRAM algorithms. In one dimension: Given a pattern string of length m for the string-matching problem, we design an algorithm that computes a deterministic sample of a sufficiently long substring in constant time. This problem used to be a bottleneck in the pattern preprocessing for one- and two-dimensional pattern matching. The best previous time bound was O(log/sup 2/ m/log log m). We use this algorithm to obtain the following results. 1. Improving the preprocessing of the constant-time text search algorithm from O(log/sup 2/ m/log log m) to n(log log m), which is now best possible. 2. A constant-time deterministic string-matching algorithm in the case that the text length n satisfies n=/spl Omega/(m/sup 1+/spl epsiv//) for a constant /spl epsiv/>0. 3. A simple probabilistic string-matching algorithm that has constant time with high probability for random input. 4. A constant expected time Las-Vegas algorithm for computing the period of the pattern and all witnesses and thus string matching itself, solving the main open problem remaining in string matching.<>