Performance Analysis of Genetic Algorithm and Ant Colony Optimization Dependent on PID Controller for Matrix Converter

Mahmoud Ibrahim Mohamed, G. El-Saady, A. Yousef
{"title":"Performance Analysis of Genetic Algorithm and Ant Colony Optimization Dependent on PID Controller for Matrix Converter","authors":"Mahmoud Ibrahim Mohamed, G. El-Saady, A. Yousef","doi":"10.1109/ICEEM52022.2021.9480640","DOIUrl":null,"url":null,"abstract":"This study provides a comparison between two widely used optimization approaches, namely, ant colony optimization (ACO) and genetic algorithm (GA) for optimal control approach for PID controller is developed for direct matrix converter (MC). Fixed voltage magnitude and frequency are converted to variable voltage magnitude and frequency by the suggested system. The PID controller is evaluated to control and improve the matrix converter's efficiency. The duty cycles are evaluated utilizing the modified Venturini approach for the greatest voltage transformation ratio of the matrix converter. The outcomes show that using a genetic algorithm to pick the optimum design of the PID controller offers many merits compared to ant colony optimization in terms of lessening the overshoot and settling times.","PeriodicalId":352371,"journal":{"name":"2021 International Conference on Electronic Engineering (ICEEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electronic Engineering (ICEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEM52022.2021.9480640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study provides a comparison between two widely used optimization approaches, namely, ant colony optimization (ACO) and genetic algorithm (GA) for optimal control approach for PID controller is developed for direct matrix converter (MC). Fixed voltage magnitude and frequency are converted to variable voltage magnitude and frequency by the suggested system. The PID controller is evaluated to control and improve the matrix converter's efficiency. The duty cycles are evaluated utilizing the modified Venturini approach for the greatest voltage transformation ratio of the matrix converter. The outcomes show that using a genetic algorithm to pick the optimum design of the PID controller offers many merits compared to ant colony optimization in terms of lessening the overshoot and settling times.
基于PID控制器的遗传算法和蚁群优化在矩阵变换器中的性能分析
本研究比较了两种常用的优化方法,即蚁群优化(ACO)和遗传算法(GA),针对直接矩阵变换器(MC)开发了PID控制器的最优控制方法。该系统将固定电压幅值和频率转换为可变电压幅值和频率。对PID控制器进行了评价,以控制和提高矩阵变换器的效率。利用改进的文丘里尼方法对矩阵变换器的最大电压变换比进行了占空比评估。结果表明,与蚁群优化算法相比,遗传算法在减少超调量和稳定时间方面具有许多优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信