Evaluation of Supervised Machine Learning Classification Algorithms for Fingerprint Recognition

Andres Rojas, G. Dolecek
{"title":"Evaluation of Supervised Machine Learning Classification Algorithms for Fingerprint Recognition","authors":"Andres Rojas, G. Dolecek","doi":"10.1109/GC-ElecEng52322.2021.9788164","DOIUrl":null,"url":null,"abstract":"This paper presents the application of the Classification Learner MATLAB tool from the Statistics and Machine Learning Toolbox for the classification process in a fingerprint recognition system based on the set B from the public databases FVC2000, FVC2002, and FVC2004. The general results indicate that this system can achieve high accuracy values for several sub-databases using multiple supervised machine learning algorithms including decision trees, discriminant analysis, support vector machines, logistic regression, nearest neighbors, naive Bayes, and ensemble classifiers. The highest accuracy value of 98.8% corresponding to the DB3-2000 subset was obtained using the ensemble subspace discriminant classifier.","PeriodicalId":344268,"journal":{"name":"2021 Global Congress on Electrical Engineering (GC-ElecEng)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Global Congress on Electrical Engineering (GC-ElecEng)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GC-ElecEng52322.2021.9788164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the application of the Classification Learner MATLAB tool from the Statistics and Machine Learning Toolbox for the classification process in a fingerprint recognition system based on the set B from the public databases FVC2000, FVC2002, and FVC2004. The general results indicate that this system can achieve high accuracy values for several sub-databases using multiple supervised machine learning algorithms including decision trees, discriminant analysis, support vector machines, logistic regression, nearest neighbors, naive Bayes, and ensemble classifiers. The highest accuracy value of 98.8% corresponding to the DB3-2000 subset was obtained using the ensemble subspace discriminant classifier.
指纹识别中有监督机器学习分类算法的评价
本文介绍了基于公共数据库FVC2000、FVC2002和FVC2004的集合B的指纹识别系统中,统计与机器学习工具箱中的Classification Learner MATLAB工具在分类过程中的应用。总体结果表明,该系统使用多种监督机器学习算法,包括决策树、判别分析、支持向量机、逻辑回归、最近邻、朴素贝叶斯和集成分类器,可以在多个子数据库中获得较高的准确率值。采用集成子空间判别分类器,得到了DB3-2000子集对应的最高准确率值98.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信