{"title":"Evaluation of Supervised Machine Learning Classification Algorithms for Fingerprint Recognition","authors":"Andres Rojas, G. Dolecek","doi":"10.1109/GC-ElecEng52322.2021.9788164","DOIUrl":null,"url":null,"abstract":"This paper presents the application of the Classification Learner MATLAB tool from the Statistics and Machine Learning Toolbox for the classification process in a fingerprint recognition system based on the set B from the public databases FVC2000, FVC2002, and FVC2004. The general results indicate that this system can achieve high accuracy values for several sub-databases using multiple supervised machine learning algorithms including decision trees, discriminant analysis, support vector machines, logistic regression, nearest neighbors, naive Bayes, and ensemble classifiers. The highest accuracy value of 98.8% corresponding to the DB3-2000 subset was obtained using the ensemble subspace discriminant classifier.","PeriodicalId":344268,"journal":{"name":"2021 Global Congress on Electrical Engineering (GC-ElecEng)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Global Congress on Electrical Engineering (GC-ElecEng)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GC-ElecEng52322.2021.9788164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents the application of the Classification Learner MATLAB tool from the Statistics and Machine Learning Toolbox for the classification process in a fingerprint recognition system based on the set B from the public databases FVC2000, FVC2002, and FVC2004. The general results indicate that this system can achieve high accuracy values for several sub-databases using multiple supervised machine learning algorithms including decision trees, discriminant analysis, support vector machines, logistic regression, nearest neighbors, naive Bayes, and ensemble classifiers. The highest accuracy value of 98.8% corresponding to the DB3-2000 subset was obtained using the ensemble subspace discriminant classifier.