Classification with Incomplete Data Using Dirichlet Process Priors

Chunping Wang, X. Liao, L. Carin, D. Dunson
{"title":"Classification with Incomplete Data Using Dirichlet Process Priors","authors":"Chunping Wang, X. Liao, L. Carin, D. Dunson","doi":"10.5555/1756006.1953036","DOIUrl":null,"url":null,"abstract":"A non-parametric hierarchical Bayesian framework is developed for designing a classifier, based on a mixture of simple (linear) classifiers. Each simple classifier is termed a local \"expert\", and the number of experts and their construction are manifested via a Dirichlet process formulation. The simple form of the \"experts\" allows analytical handling of incomplete data. The model is extended to allow simultaneous design of classifiers on multiple data sets, termed multi-task learning, with this also performed non-parametrically via the Dirichlet process. Fast inference is performed using variational Bayesian (VB) analysis, and example results are presented for several data sets. We also perform inference via Gibbs sampling, to which we compare the VB results.","PeriodicalId":314696,"journal":{"name":"Journal of machine learning research : JMLR","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of machine learning research : JMLR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1756006.1953036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

A non-parametric hierarchical Bayesian framework is developed for designing a classifier, based on a mixture of simple (linear) classifiers. Each simple classifier is termed a local "expert", and the number of experts and their construction are manifested via a Dirichlet process formulation. The simple form of the "experts" allows analytical handling of incomplete data. The model is extended to allow simultaneous design of classifiers on multiple data sets, termed multi-task learning, with this also performed non-parametrically via the Dirichlet process. Fast inference is performed using variational Bayesian (VB) analysis, and example results are presented for several data sets. We also perform inference via Gibbs sampling, to which we compare the VB results.
使用Dirichlet过程先验的不完全数据分类
基于简单(线性)分类器的混合,开发了一个非参数层次贝叶斯框架来设计分类器。每个简单分类器被称为一个局部“专家”,专家的数量和他们的结构通过狄利克雷过程公式表示。“专家”的简单形式允许对不完整的数据进行分析处理。该模型被扩展到允许在多个数据集上同时设计分类器,称为多任务学习,这也通过狄利克雷过程进行非参数化。利用变分贝叶斯(VB)分析进行快速推理,并给出了几个数据集的实例结果。我们还通过Gibbs抽样执行推理,并与VB结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信