Reasoning with spider diagrams

J. Howse, F. Molina, John Taylor, S. Kent
{"title":"Reasoning with spider diagrams","authors":"J. Howse, F. Molina, John Taylor, S. Kent","doi":"10.1109/VL.1999.795885","DOIUrl":null,"url":null,"abstract":"Spider diagrams combine and extend Venn diagrams and Euler circles to express constraints on sets and their relationships with other sets. These diagrams can usefully be used in conjunction with object-oriented modelling notations such as the Unified Modelling Language (UML). This paper summarises the main syntax and semantics of spider diagrams and introduces four inference rules for reasoning with spider diagrams and a rule governing the equivalence of the Venn and Euler forms of spider diagrams. This paper also details rules for combining two spider diagrams to produce a single diagram which retains as much of their combined semantic information as possible, and discusses disjunctive diagrams as one possible way of enriching the system in order to combine spider diagrams so that no semantic information is lost.","PeriodicalId":113128,"journal":{"name":"Proceedings 1999 IEEE Symposium on Visual Languages","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1999 IEEE Symposium on Visual Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VL.1999.795885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Spider diagrams combine and extend Venn diagrams and Euler circles to express constraints on sets and their relationships with other sets. These diagrams can usefully be used in conjunction with object-oriented modelling notations such as the Unified Modelling Language (UML). This paper summarises the main syntax and semantics of spider diagrams and introduces four inference rules for reasoning with spider diagrams and a rule governing the equivalence of the Venn and Euler forms of spider diagrams. This paper also details rules for combining two spider diagrams to produce a single diagram which retains as much of their combined semantic information as possible, and discusses disjunctive diagrams as one possible way of enriching the system in order to combine spider diagrams so that no semantic information is lost.
用蜘蛛图推理
蜘蛛图结合并扩展了维恩图和欧拉圆来表达集合上的约束以及它们与其他集合之间的关系。这些图可以有效地与面向对象的建模符号(如统一建模语言(UML))结合使用。本文总结了蜘蛛图的主要语法和语义,介绍了用蜘蛛图进行推理的四条推理规则和蜘蛛图的维恩形式和欧拉形式等价的一条规则。本文还详细介绍了将两个蜘蛛图组合成一个图的规则,该图尽可能多地保留了它们组合的语义信息,并讨论了析取图作为丰富系统的一种可能方式,以便组合蜘蛛图,这样就不会丢失语义信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信