Boyang Li, Sudheer Chunduri, K. Harms, Yuping Fan, Z. Lan
{"title":"The Effect of System Utilization on Application Performance Variability","authors":"Boyang Li, Sudheer Chunduri, K. Harms, Yuping Fan, Z. Lan","doi":"10.1145/3322789.3328743","DOIUrl":null,"url":null,"abstract":"Application performance variability caused by network contention is a major issue on dragonfly based systems. This work-in-progress study makes two contributions. First, we analyze real workload logs and conduct application experiments on the production system Theta at Argonne to evaluate application performance variability. We find a strong correlation between system utilization and performance variability where a high system utilization (e.g., above 95%) can cause up to 21% degradation in application performance. Next, driven by this key finding, we investigate a scheduling policy to mitigate workload interference by leveraging the fact that production systems often exhibit diurnal utilization behavior and not all users are in a hurry for job completion. Preliminary results show that this scheduling design is capable of improving system productivity (measured by scheduling makespan) as well as improving user-level scheduling metrics such as user wait time and job slowdown.","PeriodicalId":365438,"journal":{"name":"Proceedings of the 9th International Workshop on Runtime and Operating Systems for Supercomputers","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Workshop on Runtime and Operating Systems for Supercomputers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3322789.3328743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Application performance variability caused by network contention is a major issue on dragonfly based systems. This work-in-progress study makes two contributions. First, we analyze real workload logs and conduct application experiments on the production system Theta at Argonne to evaluate application performance variability. We find a strong correlation between system utilization and performance variability where a high system utilization (e.g., above 95%) can cause up to 21% degradation in application performance. Next, driven by this key finding, we investigate a scheduling policy to mitigate workload interference by leveraging the fact that production systems often exhibit diurnal utilization behavior and not all users are in a hurry for job completion. Preliminary results show that this scheduling design is capable of improving system productivity (measured by scheduling makespan) as well as improving user-level scheduling metrics such as user wait time and job slowdown.