A Log-Likelihood Ratio based Generalized Belief Propagation

A. Amaricai, M. Bahrami, B. Vasic
{"title":"A Log-Likelihood Ratio based Generalized Belief Propagation","authors":"A. Amaricai, M. Bahrami, B. Vasic","doi":"10.1109/EUROCON.2019.8861528","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a reduced complexity Generalized Belief Propagation (GBP) that propagates messages in Log-Likelihood Ratio (LLR) domain. The key novelties of the proposed LLR-GBP are: (i) reduced fixed point precision for messages instead of computational complex floating point format, (ii) operations performed in logarithm domain, thus eliminating the need for multiplications and divisions, (iii) usage of message ratios that leads to simple hard decision mechanisms. We demonstrated the validity of LLR-GBP on reconstruction of images passed through binary-input two-dimensional Gaussian channels with memory and affected by additive white Gaussian noise.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a reduced complexity Generalized Belief Propagation (GBP) that propagates messages in Log-Likelihood Ratio (LLR) domain. The key novelties of the proposed LLR-GBP are: (i) reduced fixed point precision for messages instead of computational complex floating point format, (ii) operations performed in logarithm domain, thus eliminating the need for multiplications and divisions, (iii) usage of message ratios that leads to simple hard decision mechanisms. We demonstrated the validity of LLR-GBP on reconstruction of images passed through binary-input two-dimensional Gaussian channels with memory and affected by additive white Gaussian noise.
基于对数似然比的广义信念传播
本文提出了一种在对数似然比(LLR)域中传播消息的降低复杂度的广义信念传播(GBP)方法。提议的LLR-GBP的关键新颖之处在于:(i)降低了消息的定点精度,而不是计算复杂的浮点格式,(ii)在对数域中执行操作,从而消除了乘法和除法的需要,(iii)使用消息比率,从而导致简单的硬决策机制。我们证明了LLR-GBP在经过具有记忆的二值输入高斯通道且受加性高斯白噪声影响的图像重建上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信