Robust activity recognition combining anomaly detection and classifier retraining

Hesam Sagha, Alberto Calatroni, J. Millán, D. Roggen, G. Tröster, Ricardo Chavarriaga
{"title":"Robust activity recognition combining anomaly detection and classifier retraining","authors":"Hesam Sagha, Alberto Calatroni, J. Millán, D. Roggen, G. Tröster, Ricardo Chavarriaga","doi":"10.1109/BSN.2013.6575491","DOIUrl":null,"url":null,"abstract":"Activity recognition systems based on body-worn motion sensors suffer from a decrease in performance during the deployment and run-time phases, because of probable changes in the sensors (e.g. displacement or rotatation), which is the case in many real-life scenarios (e.g. mobile phone in a pocket). Existing approaches to achieve robustness tend to sacrifice information (e.g. by rotation-invariant features) or reduce the weight of the anomalous sensors at the classifier fusion stage (adaptive fusion), ignoring data which might still be perfectly meaningful, although different from the training data. We propose to use adaptation to rebuild the classifier models of the sensors which have changed position by a two-step approach: in the first step, we run an anomaly detection algorithm to automatically detect which sensors are delivering unexpected data; subsequently, we trigger a system self-training process, so that the remaining classifiers retrain the “anomalous” sensors. We show the benefit of this approach in a real activity recognition dataset comprising data from 8 sensors to recognize locomotion. The approach achieves similar accuracy compared to the upper baseline, obtained by retraining the anomalous classifiers on the new data.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Activity recognition systems based on body-worn motion sensors suffer from a decrease in performance during the deployment and run-time phases, because of probable changes in the sensors (e.g. displacement or rotatation), which is the case in many real-life scenarios (e.g. mobile phone in a pocket). Existing approaches to achieve robustness tend to sacrifice information (e.g. by rotation-invariant features) or reduce the weight of the anomalous sensors at the classifier fusion stage (adaptive fusion), ignoring data which might still be perfectly meaningful, although different from the training data. We propose to use adaptation to rebuild the classifier models of the sensors which have changed position by a two-step approach: in the first step, we run an anomaly detection algorithm to automatically detect which sensors are delivering unexpected data; subsequently, we trigger a system self-training process, so that the remaining classifiers retrain the “anomalous” sensors. We show the benefit of this approach in a real activity recognition dataset comprising data from 8 sensors to recognize locomotion. The approach achieves similar accuracy compared to the upper baseline, obtained by retraining the anomalous classifiers on the new data.
结合异常检测和分类器再训练的鲁棒活动识别
基于穿戴式运动传感器的活动识别系统在部署和运行阶段会受到性能下降的影响,因为传感器可能会发生变化(例如位移或旋转),这在许多现实场景中都是如此(例如口袋里的手机)。现有实现鲁棒性的方法往往会在分类器融合阶段牺牲信息(例如通过旋转不变特征)或减少异常传感器的权重(自适应融合),而忽略了可能仍然完全有意义的数据,尽管这些数据与训练数据不同。我们提出采用自适应方法,分两步重建位置变化传感器的分类器模型:第一步,我们运行异常检测算法,自动检测哪些传感器提供了意外数据;随后,我们触发一个系统自我训练过程,以便剩余的分类器重新训练“异常”传感器。我们在一个真实的活动识别数据集中展示了这种方法的好处,该数据集包含来自8个传感器的数据来识别运动。与在新数据上重新训练异常分类器获得的上基线相比,该方法获得了相似的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信