Positive Operator Frame for Hilbert C*-modules

H. Labrigui, Hafida Massit, M. Rossafi
{"title":"Positive Operator Frame for Hilbert C*-modules","authors":"H. Labrigui, Hafida Massit, M. Rossafi","doi":"10.3126/jnms.v6i1.57469","DOIUrl":null,"url":null,"abstract":"The work on frame theory has undergone a remarkable evolution over the last century. Several related properties have applications on many fields of mathematics, engineering, signal and image processing, informatics, medecine and probability. In order to search for new results related to the role of operators in frame theory using the characterization of the positive elements in a C∗-algebra, we introduce the concept of positive operator frame, L-positive operator frame, ∗-positive operator frame and ∗-L-positive operator frame for the set of all adjointable operators on a Hilbert C∗-module denoted End∗B(H) where L is a positive operator. Also, we give some new properties.","PeriodicalId":401623,"journal":{"name":"Journal of Nepal Mathematical Society","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jnms.v6i1.57469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The work on frame theory has undergone a remarkable evolution over the last century. Several related properties have applications on many fields of mathematics, engineering, signal and image processing, informatics, medecine and probability. In order to search for new results related to the role of operators in frame theory using the characterization of the positive elements in a C∗-algebra, we introduce the concept of positive operator frame, L-positive operator frame, ∗-positive operator frame and ∗-L-positive operator frame for the set of all adjointable operators on a Hilbert C∗-module denoted End∗B(H) where L is a positive operator. Also, we give some new properties.
Hilbert C*模的正算子框架
在过去的一个世纪里,框架理论的研究经历了显著的发展。一些相关的性质在数学、工程、信号和图像处理、信息学、医学和概率论的许多领域都有应用。为了利用C * -代数中正元素的表征寻找算子在框架理论中作用的新结果,我们为Hilbert C * -模上的所有可伴算子集合引入了正算子框架、L-正算子框架、∗-正算子框架和∗-L-正算子框架的概念,其中L是一个正算子。同时,我们给出了一些新的属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信