HAND: A Hybrid Approach to Accelerate Non-contiguous Data Movement Using MPI Datatypes on GPU Clusters

Rong Shi, Xiaoyi Lu, S. Potluri, Khaled Hamidouche, Jie Zhang, D. Panda
{"title":"HAND: A Hybrid Approach to Accelerate Non-contiguous Data Movement Using MPI Datatypes on GPU Clusters","authors":"Rong Shi, Xiaoyi Lu, S. Potluri, Khaled Hamidouche, Jie Zhang, D. Panda","doi":"10.1109/ICPP.2014.31","DOIUrl":null,"url":null,"abstract":"An increasing number of MPI applications are being ported to take advantage of the compute power offered by GPUs. Data movement continues to be the major bottleneck on GPU clusters, more so when data is non-contiguous, which is common in scientific applications. The existing techniques of optimizing MPI data type processing, to improve performance of non-contiguous data movement, handle only certain data patterns efficiently while incurring overheads for the others. In this paper, we first propose a set of optimized techniques to handle different MPI data types. Next, we propose a novel framework (HAND) that enables hybrid and adaptive selection among different techniques and tuning to achieve better performance with all data types. Our experimental results using the modified DDTBench suite demonstrate up to a 98% reduction in data type latency. We also apply this data type-aware design on an N-Body particle simulation application. Performance evaluation of this application on a 64 GPU cluster shows that our proposed approach can achieve up to 80% and 54% increase in performance by using struct and indexed data types compared to the existing best design. To the best of our knowledge, this is the first attempt to propose a hybrid and adaptive solution to integrate all existing schemes to optimize arbitrary non-contiguous data movement using MPI data types on GPU clusters.","PeriodicalId":441115,"journal":{"name":"2014 43rd International Conference on Parallel Processing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 43rd International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2014.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

An increasing number of MPI applications are being ported to take advantage of the compute power offered by GPUs. Data movement continues to be the major bottleneck on GPU clusters, more so when data is non-contiguous, which is common in scientific applications. The existing techniques of optimizing MPI data type processing, to improve performance of non-contiguous data movement, handle only certain data patterns efficiently while incurring overheads for the others. In this paper, we first propose a set of optimized techniques to handle different MPI data types. Next, we propose a novel framework (HAND) that enables hybrid and adaptive selection among different techniques and tuning to achieve better performance with all data types. Our experimental results using the modified DDTBench suite demonstrate up to a 98% reduction in data type latency. We also apply this data type-aware design on an N-Body particle simulation application. Performance evaluation of this application on a 64 GPU cluster shows that our proposed approach can achieve up to 80% and 54% increase in performance by using struct and indexed data types compared to the existing best design. To the best of our knowledge, this is the first attempt to propose a hybrid and adaptive solution to integrate all existing schemes to optimize arbitrary non-contiguous data movement using MPI data types on GPU clusters.
HAND:在GPU集群上使用MPI数据类型加速非连续数据移动的混合方法
越来越多的MPI应用程序正在被移植,以利用gpu提供的计算能力。数据移动仍然是GPU集群的主要瓶颈,当数据不连续时更是如此,这在科学应用中很常见。为了提高非连续数据移动的性能,优化MPI数据类型处理的现有技术只能有效地处理某些数据模式,而会导致其他数据模式的开销。在本文中,我们首先提出了一套优化的技术来处理不同的MPI数据类型。接下来,我们提出了一个新的框架(HAND),它可以在不同的技术和调优之间进行混合和自适应选择,从而在所有数据类型下实现更好的性能。我们使用改进的DDTBench套件的实验结果表明,数据类型延迟减少了98%。我们还将这种数据类型感知设计应用于n体粒子模拟应用。该应用程序在64 GPU集群上的性能评估表明,与现有的最佳设计相比,我们提出的方法通过使用结构和索引数据类型可以实现高达80%和54%的性能提升。据我们所知,这是第一次尝试提出一个混合和自适应的解决方案来集成所有现有的方案,以优化GPU集群上使用MPI数据类型的任意非连续数据移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信