Multi-selection Attention for Multimodal Aspect-level Sentiment Classification

YuQing Miao, Ronghai Luo, Tonglai Liu, Wanzhen Zhang, Guoyong Cai, M. Zhou
{"title":"Multi-selection Attention for Multimodal Aspect-level Sentiment Classification","authors":"YuQing Miao, Ronghai Luo, Tonglai Liu, Wanzhen Zhang, Guoyong Cai, M. Zhou","doi":"10.1109/PAAP56126.2022.10010454","DOIUrl":null,"url":null,"abstract":"Multimodal aspect-level sentiment classification aims to utilize images to recognize the sentiment polarity of target aspects in text. To address the issues of low utilization of inter-modal complementary information and vanishing gradients, a multimodal aspect-level sentiment based on multi-selection attention mechanism is proposed. Multi-selection attention mechanism explicitly considers the contribution of different modalities to aspects and utilizes shared features and private features of image modality to enhance sentiment expression of target aspects. On this basis, inspired by residual connections in ResNet and encoder-decoders in U-Net, a simple and effective residual encoder-decoder is proposed to mine deep information and avoid vanishing gradients. The experimental results on two public sentiment datasets show that the proposed model can better utilize images to supplement textual modality and improve the accuracy of sentiment classification.","PeriodicalId":336339,"journal":{"name":"2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP56126.2022.10010454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal aspect-level sentiment classification aims to utilize images to recognize the sentiment polarity of target aspects in text. To address the issues of low utilization of inter-modal complementary information and vanishing gradients, a multimodal aspect-level sentiment based on multi-selection attention mechanism is proposed. Multi-selection attention mechanism explicitly considers the contribution of different modalities to aspects and utilizes shared features and private features of image modality to enhance sentiment expression of target aspects. On this basis, inspired by residual connections in ResNet and encoder-decoders in U-Net, a simple and effective residual encoder-decoder is proposed to mine deep information and avoid vanishing gradients. The experimental results on two public sentiment datasets show that the proposed model can better utilize images to supplement textual modality and improve the accuracy of sentiment classification.
多模态层面情感分类的多选择注意
多模态方面级情感分类的目的是利用图像识别文本中目标方面的情感极性。针对多模态互补信息利用率低和梯度消失的问题,提出了一种基于多选择注意机制的多模态方面级情感。多选择注意机制明确考虑了不同模态对方面的贡献,利用图像模态的共享特征和私有特征来增强目标方面的情感表达。在此基础上,借鉴ResNet中的残差连接和U-Net中的编码器-解码器,提出了一种简单有效的残差编码器-解码器来挖掘深度信息,避免梯度消失。在两个公共情感数据集上的实验结果表明,该模型可以更好地利用图像来补充文本情态,提高情感分类的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信