A Nonnegative Tensor Factorization Approach for Three-Dimensional Binary Wafer-Test Data

T. Siegert, R. Schachtner, G. Pöppel, E. Lang
{"title":"A Nonnegative Tensor Factorization Approach for Three-Dimensional Binary Wafer-Test Data","authors":"T. Siegert, R. Schachtner, G. Pöppel, E. Lang","doi":"10.1109/ICMLA.2016.0151","DOIUrl":null,"url":null,"abstract":"We introduce a new Blind Source Separation Approach called binNTF which operates on tensor-valued binary datasets. Assuming that several simultaneously acting sources or elementary causes are generating the observed data, the objective of our approach is to uncover the underlying sources as well as their individual contribution to each observation with a minimum number of assumptions in an unsupervised fashion. We motivate, develop and demonstrate our method in the context of binary wafer test data which evolve during microchip fabrication. In this application, we also have to deal with incomplete datasets which can occur due to the commonly used stop-on-first-fail testing procedure or result from the aggregation of several distinct tests into BIN categories.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce a new Blind Source Separation Approach called binNTF which operates on tensor-valued binary datasets. Assuming that several simultaneously acting sources or elementary causes are generating the observed data, the objective of our approach is to uncover the underlying sources as well as their individual contribution to each observation with a minimum number of assumptions in an unsupervised fashion. We motivate, develop and demonstrate our method in the context of binary wafer test data which evolve during microchip fabrication. In this application, we also have to deal with incomplete datasets which can occur due to the commonly used stop-on-first-fail testing procedure or result from the aggregation of several distinct tests into BIN categories.
三维二元晶圆试验数据的非负张量分解方法
我们介绍了一种新的盲源分离方法,称为binNTF,它对张量值二值数据集进行操作。假设几个同时起作用的源或基本原因正在产生观察到的数据,我们的方法的目标是在无监督的方式下,以最少数量的假设揭示潜在的源以及它们对每个观察的个人贡献。我们在微芯片制造过程中不断发展的二进制晶圆测试数据的背景下激励,开发和演示我们的方法。在此应用程序中,我们还必须处理不完整的数据集,这可能是由于通常使用的“先失败即停止”测试过程或将几个不同的测试聚合到BIN类别所导致的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信