{"title":"A stable learning algorithm for recurrent neural networks","authors":"P. Guturu, H. Pareek, P. Ananthraj","doi":"10.1109/TAI.1991.167094","DOIUrl":null,"url":null,"abstract":"The authors used the Liapunov approach to derive a new set of sufficient conditions that explain the stability of feedforward networks. A simplification of these conditions results in a new recurrent backpropagation algorithm. This algorithm preserves the local updating characteristic of the original algorithm but is, at the same time, found to be quite effective even for problems which offered resistance to solution by L. B. Almeida's (1987) approach.<<ETX>>","PeriodicalId":371778,"journal":{"name":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1991.167094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The authors used the Liapunov approach to derive a new set of sufficient conditions that explain the stability of feedforward networks. A simplification of these conditions results in a new recurrent backpropagation algorithm. This algorithm preserves the local updating characteristic of the original algorithm but is, at the same time, found to be quite effective even for problems which offered resistance to solution by L. B. Almeida's (1987) approach.<>