Accuracy estimation of approximated Gaussian distribution obtained from Fast Forward Selection scenario reduction algorithm

N. Patel, J. Serrao
{"title":"Accuracy estimation of approximated Gaussian distribution obtained from Fast Forward Selection scenario reduction algorithm","authors":"N. Patel, J. Serrao","doi":"10.1109/ICESA.2015.7503368","DOIUrl":null,"url":null,"abstract":"Probability distributions are used to represent uncertainty. One area of application of probability distribution is optimization under uncertainty more specifically known as Stochastic Integer Programming. Distributions with large number of scenarios increase computational complexity. Fast Forward Selection scenario (FFS) reduction algorithm provides a way to approximate the probability distribution. The paper applies FFS to a gaussian distribution and estimates the original distribution with lower number of scenarios while maintaining the overall variation of probability curve similar to the original curve. New probability density of the approximated distribution is close to the original distribution.","PeriodicalId":259816,"journal":{"name":"2015 International Conference on Energy Systems and Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Energy Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESA.2015.7503368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Probability distributions are used to represent uncertainty. One area of application of probability distribution is optimization under uncertainty more specifically known as Stochastic Integer Programming. Distributions with large number of scenarios increase computational complexity. Fast Forward Selection scenario (FFS) reduction algorithm provides a way to approximate the probability distribution. The paper applies FFS to a gaussian distribution and estimates the original distribution with lower number of scenarios while maintaining the overall variation of probability curve similar to the original curve. New probability density of the approximated distribution is close to the original distribution.
基于快进选择场景约简算法的近似高斯分布精度估计
概率分布用来表示不确定性。概率分布的一个应用领域是不确定性下的优化,更具体地说是随机整数规划。具有大量场景的分布增加了计算复杂性。快进选择场景(FFS)约简算法提供了一种近似概率分布的方法。本文将FFS应用于高斯分布,在保持概率曲线总体变化与原始曲线相似的情况下,对情景数较少的原始分布进行估计。新的近似分布的概率密度接近原分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信