{"title":"Probabilistic rotation: scheduling graphs with uncertain execution time","authors":"S. Tongsima, C. Phongpensri, E. Sha, N. Passos","doi":"10.1109/ICPP.1997.622658","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm called probabilistic rotation scheduling which takes advantage of loop pipelining to schedule tasks with uncertain times to a parallel processing system. These tasks normally occur when conditional instructions are employed and/or inputs of the tasks influence the computation time. We show that based on our loop scheduling algorithm the length of the resulting schedule can be guaranteed to be satisfied for a given probability. The experiments show that the resulting schedule length for a given probability of confidence can be significantly better than the schedules obtained by worst-case or average-case scenario.","PeriodicalId":221761,"journal":{"name":"Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.1997.622658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper proposes an algorithm called probabilistic rotation scheduling which takes advantage of loop pipelining to schedule tasks with uncertain times to a parallel processing system. These tasks normally occur when conditional instructions are employed and/or inputs of the tasks influence the computation time. We show that based on our loop scheduling algorithm the length of the resulting schedule can be guaranteed to be satisfied for a given probability. The experiments show that the resulting schedule length for a given probability of confidence can be significantly better than the schedules obtained by worst-case or average-case scenario.