Electro-optical synthetic civilian vehicle data domes

R. Price, J. Ramirez, T. Rovito, O. Mendoza-Schrock
{"title":"Electro-optical synthetic civilian vehicle data domes","authors":"R. Price, J. Ramirez, T. Rovito, O. Mendoza-Schrock","doi":"10.1109/NAECON.2012.6531044","DOIUrl":null,"url":null,"abstract":"This paper will look at using open source tools (Blender, LuxRender, and Python) to generate a large data set to be used to train an object recognition system. The model produces camera position, camera attitude, and synthetic camera data that can be used for exploitation purposes. We focus on electro-optical (EO) visible sensors to simplify the rendering but this work could be extended to use other rendering tools that support different modalities. The key idea of this paper is to provide an architecture to produce synthetic training data which is modular in design and constructed on open-source off-the-shelf software yielding a physics accurate virtual model of the object we want to recognize. For this paper the objects we are focused on are civilian vehicles. This architecture shows how leveraging existing open-source software allows for practical training of Electro-Optical object recognition algorithms.","PeriodicalId":352567,"journal":{"name":"2012 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2012.6531044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper will look at using open source tools (Blender, LuxRender, and Python) to generate a large data set to be used to train an object recognition system. The model produces camera position, camera attitude, and synthetic camera data that can be used for exploitation purposes. We focus on electro-optical (EO) visible sensors to simplify the rendering but this work could be extended to use other rendering tools that support different modalities. The key idea of this paper is to provide an architecture to produce synthetic training data which is modular in design and constructed on open-source off-the-shelf software yielding a physics accurate virtual model of the object we want to recognize. For this paper the objects we are focused on are civilian vehicles. This architecture shows how leveraging existing open-source software allows for practical training of Electro-Optical object recognition algorithms.
光电合成民用车辆数据圆顶
本文将着眼于使用开源工具(Blender, LuxRender和Python)来生成用于训练对象识别系统的大型数据集。该模型生成可用于开发目的的摄像机位置、摄像机姿态和合成摄像机数据。我们专注于光电(EO)可见传感器来简化渲染,但这项工作可以扩展到使用支持不同模态的其他渲染工具。本文的核心思想是提供一种生成综合训练数据的体系结构,该体系结构在设计上是模块化的,并构建在开源的现成软件上,从而产生我们想要识别的对象的物理精确虚拟模型。本文的研究对象是民用车辆。该架构展示了如何利用现有的开源软件进行光电对象识别算法的实际训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信