Design and Implementation of Wake-on-Voice and Command Recognition Algorithm

Shaohui Chang, Xiaohui Wang, Tingzhang Fang, Lin Qian
{"title":"Design and Implementation of Wake-on-Voice and Command Recognition Algorithm","authors":"Shaohui Chang, Xiaohui Wang, Tingzhang Fang, Lin Qian","doi":"10.1109/ihmsc55436.2022.00009","DOIUrl":null,"url":null,"abstract":"This paper analyzes methods of speech recognition and lays an emphasize on acoustic model, language model and decoding algorithm based on the output of these two models. Hidden Markov Model is applied to acoustic model to build a state graph of acoustic features of input speech sample. After testing, the arousing rate is above 95%, the mis-arousing-rate is below 5% and response time of the wake-on-voice model is about 0.2s.","PeriodicalId":447862,"journal":{"name":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ihmsc55436.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes methods of speech recognition and lays an emphasize on acoustic model, language model and decoding algorithm based on the output of these two models. Hidden Markov Model is applied to acoustic model to build a state graph of acoustic features of input speech sample. After testing, the arousing rate is above 95%, the mis-arousing-rate is below 5% and response time of the wake-on-voice model is about 0.2s.
语音唤醒与命令识别算法的设计与实现
本文分析了语音识别的方法,重点介绍了声学模型、语言模型和基于这两个模型输出的解码算法。将隐马尔可夫模型应用于声学模型,建立输入语音样本声学特征的状态图。经测试,唤醒率在95%以上,误唤醒率在5%以下,基于语音唤醒模型的响应时间约为0.2s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信