Optimal Las Vegas Approximate Near Neighbors in ℓp

Alexander Wei
{"title":"Optimal Las Vegas Approximate Near Neighbors in ℓp","authors":"Alexander Wei","doi":"10.1145/3461777","DOIUrl":null,"url":null,"abstract":"We show that approximate near neighbor search in high dimensions can be solved in a Las Vegas fashion (i.e., without false negatives) for ℓp (1≤ p≤ 2) while matching the performance of optimal locality-sensitive hashing. Specifically, we construct a data-independent Las Vegas data structure with query time O(dnρ) and space usage O(dn1+ρ) for (r, c r)-approximate near neighbors in Rd under the ℓp norm, where ρ = 1/cp + o(1). Furthermore, we give a Las Vegas locality-sensitive filter construction for the unit sphere that can be used with the data-dependent data structure of Andoni et al. (SODA 2017) to achieve optimal space-time tradeoffs in the data-dependent setting. For the symmetric case, this gives us a data-dependent Las Vegas data structure with query time O(dnρ) and space usage O(dn1+ρ) for (r, c r)-approximate near neighbors in Rd under the ℓp norm, where ρ = 1/(2cp - 1) + o(1). Our data-independent construction improves on the recent Las Vegas data structure of Ahle (FOCS 2017) for ℓp when 1 < p≤ 2. Our data-dependent construction performs even better for ℓp for all pε [1, 2] and is the first Las Vegas approximate near neighbors data structure to make use of data-dependent approaches. We also answer open questions of Indyk (SODA 2000), Pagh (SODA 2016), and Ahle by showing that for approximate near neighbors, Las Vegas data structures can match state-of-the-art Monte Carlo data structures in performance for both the data-independent and data-dependent settings and across space-time tradeoffs.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that approximate near neighbor search in high dimensions can be solved in a Las Vegas fashion (i.e., without false negatives) for ℓp (1≤ p≤ 2) while matching the performance of optimal locality-sensitive hashing. Specifically, we construct a data-independent Las Vegas data structure with query time O(dnρ) and space usage O(dn1+ρ) for (r, c r)-approximate near neighbors in Rd under the ℓp norm, where ρ = 1/cp + o(1). Furthermore, we give a Las Vegas locality-sensitive filter construction for the unit sphere that can be used with the data-dependent data structure of Andoni et al. (SODA 2017) to achieve optimal space-time tradeoffs in the data-dependent setting. For the symmetric case, this gives us a data-dependent Las Vegas data structure with query time O(dnρ) and space usage O(dn1+ρ) for (r, c r)-approximate near neighbors in Rd under the ℓp norm, where ρ = 1/(2cp - 1) + o(1). Our data-independent construction improves on the recent Las Vegas data structure of Ahle (FOCS 2017) for ℓp when 1 < p≤ 2. Our data-dependent construction performs even better for ℓp for all pε [1, 2] and is the first Las Vegas approximate near neighbors data structure to make use of data-dependent approaches. We also answer open questions of Indyk (SODA 2000), Pagh (SODA 2016), and Ahle by showing that for approximate near neighbors, Las Vegas data structures can match state-of-the-art Monte Carlo data structures in performance for both the data-independent and data-dependent settings and across space-time tradeoffs.
最优的拉斯维加斯近似近邻
我们证明了在符合最优位置敏感哈希性能的情况下,高维的近似近邻搜索可以用拉斯维加斯的方式(即没有假阴性)解决。具体来说,我们构造了一个数据无关的Las Vegas数据结构,对于(r, c r)-在Rd中的近似近邻,在p范数下,查询时间为O(dnρ),空间使用为O(dn1+ρ),其中ρ = 1/cp + O(1)。此外,我们为单位球体给出了拉斯维加斯位置敏感滤波器结构,该结构可与Andoni等人(SODA 2017)的数据依赖数据结构一起使用,以在数据依赖设置中实现最佳时空权衡。对于对称情况,这给了我们一个数据依赖的拉斯维加斯数据结构,查询时间为O(dnρ),空间使用为O(dn1+ρ),对于(r, c r)-在ldp范数下的近似近邻,其中ρ = 1/(2cp - 1) + O(1)。当1 < p≤2时,我们的数据独立结构改进了Ahle最近的拉斯维加斯数据结构(FOCS 2017)。我们的数据依赖结构对于所有的pε[1,2]在p上表现得更好,并且是第一个使用数据依赖方法的拉斯维加斯近似近邻数据结构。我们还回答了Indyk (SODA 2000)、Pagh (SODA 2016)和Ahle的开放式问题,表明对于近似近邻,拉斯维加斯数据结构可以在数据独立和数据依赖设置以及跨时空权衡的性能上与最先进的蒙特卡罗数据结构相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信