{"title":"FPGA Design for Autonomous Vehicle Driving Using Binarized Neural Networks","authors":"Kaijie Wei, Koki Honda, H. Amano","doi":"10.1109/FPT.2018.00091","DOIUrl":null,"url":null,"abstract":"We propose an autonomous vehicle controlled by FPGAs. In our design, considering embedded systems, we apply the binarized neural networks (BNNs) which can realize a satis-fying result in high speed and accuracy to recognize pedestrians and some obstacles on a given road. To detect the traffic light, a passive camera-based pipeline is applied. Furthermore, the implementation of road lane detection is based on color selection algorithm, Canny Edge Detection, and Hough Transformation. The proposed design is realized by two Xilinx boards: PYNQ-Z1 and Zynq-Xc7Z010. These two FPGA boards cooperate with each other through a shared network cable. In the proposed design, the resource used by Zynq-Xc7Z010 can be greatly reduced and the inference time on the FPGA has been thousands times faster than the software implementation.","PeriodicalId":434541,"journal":{"name":"2018 International Conference on Field-Programmable Technology (FPT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2018.00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We propose an autonomous vehicle controlled by FPGAs. In our design, considering embedded systems, we apply the binarized neural networks (BNNs) which can realize a satis-fying result in high speed and accuracy to recognize pedestrians and some obstacles on a given road. To detect the traffic light, a passive camera-based pipeline is applied. Furthermore, the implementation of road lane detection is based on color selection algorithm, Canny Edge Detection, and Hough Transformation. The proposed design is realized by two Xilinx boards: PYNQ-Z1 and Zynq-Xc7Z010. These two FPGA boards cooperate with each other through a shared network cable. In the proposed design, the resource used by Zynq-Xc7Z010 can be greatly reduced and the inference time on the FPGA has been thousands times faster than the software implementation.