Online Summarizing Alerts through Semantic and Behavior Information

Jia Chen, Peng Wang, Wei Wang
{"title":"Online Summarizing Alerts through Semantic and Behavior Information","authors":"Jia Chen, Peng Wang, Wei Wang","doi":"10.1145/3510003.3510055","DOIUrl":null,"url":null,"abstract":"Alerts, which record details about system failures, are crucial data for monitoring a online service system. Due to the complex correlation between system components, a system failure usually triggers a large number of alerts, making the traditional manual handling of alerts insufficient. Thus, automatically summarizing alerts is a problem demanding prompt solution. This paper tackles this challenge through a novel approach based on supervised learning. The proposed approach, OAS (Online Alert Summarizing), first learns two types of information from alerts, semantic information and behavior information, respectively. Then, OAS adopts a specific deep learning model to aggregate semantic and behavior repre-sentations of alerts and thus determines the correlation between alerts. OAS is able to summarize the newly reported alert online. Extensive experiments, which are conducted on real alert datasets from two large commercial banks, demonstrate the efficiency and the effectiveness of OAS.","PeriodicalId":202896,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510003.3510055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Alerts, which record details about system failures, are crucial data for monitoring a online service system. Due to the complex correlation between system components, a system failure usually triggers a large number of alerts, making the traditional manual handling of alerts insufficient. Thus, automatically summarizing alerts is a problem demanding prompt solution. This paper tackles this challenge through a novel approach based on supervised learning. The proposed approach, OAS (Online Alert Summarizing), first learns two types of information from alerts, semantic information and behavior information, respectively. Then, OAS adopts a specific deep learning model to aggregate semantic and behavior repre-sentations of alerts and thus determines the correlation between alerts. OAS is able to summarize the newly reported alert online. Extensive experiments, which are conducted on real alert datasets from two large commercial banks, demonstrate the efficiency and the effectiveness of OAS.
在线汇总警报通过语义和行为信息
警报记录了系统故障的详细信息,是监控在线服务系统的关键数据。由于系统组件之间的复杂相关性,系统故障通常会触发大量警报,传统的手动处理警报的方法是不够的。因此,自动汇总警报是一个需要及时解决的问题。本文通过一种基于监督学习的新方法解决了这一挑战。提出的方法OAS (Online Alert summarization)首先从警报中分别学习两种类型的信息:语义信息和行为信息。然后,OAS采用特定的深度学习模型对警报的语义表示和行为表示进行聚合,从而确定警报之间的相关性。美洲国家组织能够在线总结新报告的警报。在两家大型商业银行的真实警报数据集上进行的大量实验证明了OAS的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信