L. Gouyet, G. Cathébras, S. Bernard, D. Guiraud, Y. Bertrand
{"title":"A New Configuration of Multipolar Cuff Electrode and Dedicated IC for Afferent Signal Recording","authors":"L. Gouyet, G. Cathébras, S. Bernard, D. Guiraud, Y. Bertrand","doi":"10.1109/CNE.2007.369739","DOIUrl":null,"url":null,"abstract":"Sensory information coming from natural sensors and being propagated on afferent nerve fibers could be used as feedback for a more efficient closed-loop control of a functional electrical stimulation system. In order to extract and separate these signals according to their nerve fascicule origins, we propose a new architecture of a multipolar cuff electrode and an optimized integrated acquisition circuit. Concerning the electrode, we propose a specific configuration using a large number of poles in order to both reject parasitic signals, such as electromyogram and provide a maximum of recording channels in order to help the signal localization inside the nerve. Moreover, specific low-level analog signal processing was designed to extract the expected low-amplitude signal from its noisy environment. This signal processing is implemented in an ASIC that has to be implanted close to the electrode to achieve the best signal-to-noise ratio","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Sensory information coming from natural sensors and being propagated on afferent nerve fibers could be used as feedback for a more efficient closed-loop control of a functional electrical stimulation system. In order to extract and separate these signals according to their nerve fascicule origins, we propose a new architecture of a multipolar cuff electrode and an optimized integrated acquisition circuit. Concerning the electrode, we propose a specific configuration using a large number of poles in order to both reject parasitic signals, such as electromyogram and provide a maximum of recording channels in order to help the signal localization inside the nerve. Moreover, specific low-level analog signal processing was designed to extract the expected low-amplitude signal from its noisy environment. This signal processing is implemented in an ASIC that has to be implanted close to the electrode to achieve the best signal-to-noise ratio