{"title":"New Heat Energy Trading Concepts for the Next Generation Smart Grids","authors":"Ali R. Al-Roomi, M. El-Hawary","doi":"10.1109/CCECE.2018.8447624","DOIUrl":null,"url":null,"abstract":"Modern electric power systems are heavily structured based on digital technology. Starting from the production point to the consuming point, all the sensing devices have a two-way communication that allows for quick and smooth actions to monitor, control, optimize, and protect the corresponding electric power grid with a fast response to any change in the system status. During the winter season, especially in cold countries, a big portion of non-electric energy is consumed for heating purposes. Such these alternative energy sources are: logs, solar, and biogas water heaters. In smart grids, the local trading strategy is possible between two entities, where the one that has a surplus energy can transfer it to others. However, the preceding non-electric forms of energy are still not traded between entities. This paper presents a new concept on how to make this type of nonclassical energy trading possible between entities. This concept can be considered as a basis for solving the missing link in managing electric and non-electric forms of energy in the next generation smart grids.","PeriodicalId":181463,"journal":{"name":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2018.8447624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Modern electric power systems are heavily structured based on digital technology. Starting from the production point to the consuming point, all the sensing devices have a two-way communication that allows for quick and smooth actions to monitor, control, optimize, and protect the corresponding electric power grid with a fast response to any change in the system status. During the winter season, especially in cold countries, a big portion of non-electric energy is consumed for heating purposes. Such these alternative energy sources are: logs, solar, and biogas water heaters. In smart grids, the local trading strategy is possible between two entities, where the one that has a surplus energy can transfer it to others. However, the preceding non-electric forms of energy are still not traded between entities. This paper presents a new concept on how to make this type of nonclassical energy trading possible between entities. This concept can be considered as a basis for solving the missing link in managing electric and non-electric forms of energy in the next generation smart grids.