Inline Inspection Improvement using Machine Learning on Broadband Plasma Inspector in an Advanced Foundry Fab

SM Guo, Jx Liu, R. Navalakhe, A. Lee, B. Tsai, Mahatma Lin, M. Plihal, Jianyun Zhou
{"title":"Inline Inspection Improvement using Machine Learning on Broadband Plasma Inspector in an Advanced Foundry Fab","authors":"SM Guo, Jx Liu, R. Navalakhe, A. Lee, B. Tsai, Mahatma Lin, M. Plihal, Jianyun Zhou","doi":"10.1109/ASMC.2019.8791796","DOIUrl":null,"url":null,"abstract":"For inline defect inspection it is important to achieve a high capture rate of defects of interest (DOI) at low nuisance rate to increase production efficiency. A broadband plasma (BBP) wafer defect inspection system with Inline Defect Organizer™ (iDO) can separate DOI and nuisance defects into different bins.However, high expertise is required to set up an effective iDO™ classifier. Traditional iDO setup complexity increases as design rules shrink. A novel approach is developed by adopting machine learning algorithms and SEM-classified defect data to create a new iDO classifier (a.k.a. iDO 2.0). The results are promising, showing that iDO 2.0 classifier outperforms the iDO in sensitivity, nuisance rate, ease of use, time to results and cross- device portability.","PeriodicalId":287541,"journal":{"name":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2019.8791796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For inline defect inspection it is important to achieve a high capture rate of defects of interest (DOI) at low nuisance rate to increase production efficiency. A broadband plasma (BBP) wafer defect inspection system with Inline Defect Organizer™ (iDO) can separate DOI and nuisance defects into different bins.However, high expertise is required to set up an effective iDO™ classifier. Traditional iDO setup complexity increases as design rules shrink. A novel approach is developed by adopting machine learning algorithms and SEM-classified defect data to create a new iDO classifier (a.k.a. iDO 2.0). The results are promising, showing that iDO 2.0 classifier outperforms the iDO in sensitivity, nuisance rate, ease of use, time to results and cross- device portability.
利用机器学习改进先进晶圆厂宽带等离子体检测的在线检测
对于在线缺陷检测来说,在低妨害率下实现高兴趣缺陷(DOI)捕获率是提高生产效率的重要途径。宽带等离子体(BBP)晶圆缺陷检测系统与内联缺陷组织者™(iDO)可以分离DOI和滋扰缺陷到不同的箱。然而,建立一个有效的iDO™分类器需要很高的专业知识。传统的iDO设置复杂性随着设计规则的缩减而增加。采用机器学习算法和sem分类的缺陷数据来创建新的iDO分类器(也称为iDO 2.0)。结果表明,iDO 2.0分类器在灵敏度、干扰率、易用性、获得结果的时间和跨设备可移植性方面优于iDO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信