ISDNet: Integrating Shallow and Deep Networks for Efficient Ultra-high Resolution Segmentation

Shaohua Guo, Liang Liu, Zhenye Gan, Yabiao Wang, Wuhao Zhang, Chengjie Wang, Guannan Jiang, Wei Zhang, Ran Yi, Lizhuang Ma, Ke Xu
{"title":"ISDNet: Integrating Shallow and Deep Networks for Efficient Ultra-high Resolution Segmentation","authors":"Shaohua Guo, Liang Liu, Zhenye Gan, Yabiao Wang, Wuhao Zhang, Chengjie Wang, Guannan Jiang, Wei Zhang, Ran Yi, Lizhuang Ma, Ke Xu","doi":"10.1109/CVPR52688.2022.00432","DOIUrl":null,"url":null,"abstract":"The huge burden of computation and memory are two obstacles in ultra-high resolution image segmentation. To tackle these issues, most of the previous works follow the global-local refinement pipeline, which pays more attention to the memory consumption but neglects the inference speed. In comparison to the pipeline that partitions the large image into small local regions, we focus on inferring the whole image directly. In this paper, we propose ISDNet, a novel ultra-high resolution segmentation framework that integrates the shallow and deep networks in a new manner, which significantly accelerates the inference speed while achieving accurate segmentation. To further exploit the relationship between the shallow and deep features, we propose a novel Relational-Aware feature Fusion module, which ensures high performance and robustness of our framework. Extensive experiments on Deepglobe, Inria Aerial, and Cityscapes datasets demonstrate our performance is consistently superior to state-of-the-arts. Specifically, it achieves 73.30 mIoU with a speed of 27.70 FPS on Deepglobe, which is more accurate and 172 × faster than the recent competitor. Code available at https://github.com/cedricgsh/ISDNet.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.00432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The huge burden of computation and memory are two obstacles in ultra-high resolution image segmentation. To tackle these issues, most of the previous works follow the global-local refinement pipeline, which pays more attention to the memory consumption but neglects the inference speed. In comparison to the pipeline that partitions the large image into small local regions, we focus on inferring the whole image directly. In this paper, we propose ISDNet, a novel ultra-high resolution segmentation framework that integrates the shallow and deep networks in a new manner, which significantly accelerates the inference speed while achieving accurate segmentation. To further exploit the relationship between the shallow and deep features, we propose a novel Relational-Aware feature Fusion module, which ensures high performance and robustness of our framework. Extensive experiments on Deepglobe, Inria Aerial, and Cityscapes datasets demonstrate our performance is consistently superior to state-of-the-arts. Specifically, it achieves 73.30 mIoU with a speed of 27.70 FPS on Deepglobe, which is more accurate and 172 × faster than the recent competitor. Code available at https://github.com/cedricgsh/ISDNet.
ISDNet:集成浅层和深层网络,实现高效超高分辨率分割
巨大的计算负担和内存负担是超高分辨率图像分割的两大障碍。为了解决这些问题,以前的工作大多采用全局-局部优化管道,该管道更关注内存消耗而忽略了推理速度。与将大图像分割成小的局部区域的流水线方法相比,我们更侧重于直接推断整个图像。在本文中,我们提出了一种新的超高分辨率分割框架ISDNet,它以一种新的方式集成了浅网和深网,在实现准确分割的同时显著加快了推理速度。为了进一步挖掘浅特征和深特征之间的关系,我们提出了一种新的关系感知特征融合模块,该模块确保了框架的高性能和鲁棒性。在Deepglobe, Inria Aerial和cityscape数据集上进行的大量实验表明,我们的性能始终优于最先进的性能。具体来说,它在Deepglobe上达到了73.30 mIoU,速度为27.70 FPS,比最近的竞争对手更准确,速度快172倍。代码可从https://github.com/cedricgsh/ISDNet获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信