Generalizations of parts of Grace's apolarity theorem involving circular regions (with a characteristic) and their applications

V. K. Jain
{"title":"Generalizations of parts of Grace's apolarity theorem involving circular regions (with a characteristic) and their applications","authors":"V. K. Jain","doi":"10.1080/02781070500087766","DOIUrl":null,"url":null,"abstract":"According to Grace's apolarity theorem, if the coefficient of two polynomials satisfy the equation then (i) f(z) has at least one zero, in a circular region C containing all zeros of g(z) (ii) g(z) has at least one zero, in a circular region C containing all zeros of f(z). We have obtained generalizations of (i), by considering g(z) to be any polynomial of degree not exceeding n and C to be a circular region (containing 0) or a circular region with a convex complement and generalizations of (ii), by considering g(z) to be any polynomial of degree not exceeding n and C to be a circular region (not containing 0) or a convex circular region. We have applied these generalizations to the study of the zeros of certain composite polynomials (obtained from two given polynomials), thereby leading also to certain generalizations of Szegö's theorem [Szegö, G., 1922, Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen. Mathematische Zeitschrift, 13, 28–55.] involving circular regions (with a characteristic).","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500087766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

According to Grace's apolarity theorem, if the coefficient of two polynomials satisfy the equation then (i) f(z) has at least one zero, in a circular region C containing all zeros of g(z) (ii) g(z) has at least one zero, in a circular region C containing all zeros of f(z). We have obtained generalizations of (i), by considering g(z) to be any polynomial of degree not exceeding n and C to be a circular region (containing 0) or a circular region with a convex complement and generalizations of (ii), by considering g(z) to be any polynomial of degree not exceeding n and C to be a circular region (not containing 0) or a convex circular region. We have applied these generalizations to the study of the zeros of certain composite polynomials (obtained from two given polynomials), thereby leading also to certain generalizations of Szegö's theorem [Szegö, G., 1922, Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen. Mathematische Zeitschrift, 13, 28–55.] involving circular regions (with a characteristic).
涉及圆区域(带特征)的格雷斯极性定理部分的推广及其应用
根据Grace的极性定理,如果两个多项式的系数满足方程,则(i) f(z)在包含g(z)的所有零的圆形区域C中至少有一个零;(ii) g(z)在包含f(z)的所有零的圆形区域C中至少有一个零。通过考虑g(z)为不超过n次的多项式,C为不超过n次的圆区域(含0)或带凸补的圆区域,我们得到了(i)的推广;通过考虑g(z)为不超过n次的多项式,C为不超过0次的圆区域(含0)或凸圆区域,我们得到了(ii)的推广。我们已经将这些推广应用于某些复合多项式(由两个给定多项式得到)的零点的研究,从而也导致Szegö定理的某些推广[Szegö, G., 1922, Bemerkungen zu einem Satz von J.H. Grace ber die Wurzeln algebraischer Gleichungen]。数学时代,13,28-55。涉及圆形区域的(有特征的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信