Interactive Recommender Systems: Tutorial

H. Steck, R. V. Zwol, Chris Johnson
{"title":"Interactive Recommender Systems: Tutorial","authors":"H. Steck, R. V. Zwol, Chris Johnson","doi":"10.1145/2792838.2792840","DOIUrl":null,"url":null,"abstract":"In this tutorial we will explore the field of interactive video and music recommendations and their application at Netflix and Spotify. Interactive recommender systems enable the user to steer the received recommendations in the desired direction through explicit interaction with the system. In this tutorial, we outline the various aspects that are crucial for a smooth and effective user experience. In particular, we present our insights from several A/B tests. The tutorial will help researchers and practitioners in the RecSys community to gain a deeper understanding of the challenges related to the application of recommender systems in the online video and music entertainment business.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2792840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this tutorial we will explore the field of interactive video and music recommendations and their application at Netflix and Spotify. Interactive recommender systems enable the user to steer the received recommendations in the desired direction through explicit interaction with the system. In this tutorial, we outline the various aspects that are crucial for a smooth and effective user experience. In particular, we present our insights from several A/B tests. The tutorial will help researchers and practitioners in the RecSys community to gain a deeper understanding of the challenges related to the application of recommender systems in the online video and music entertainment business.
互动推荐系统:教程
在本教程中,我们将探索互动视频和音乐推荐领域及其在Netflix和Spotify上的应用。交互式推荐系统使用户能够通过与系统的显式交互将收到的推荐引导到期望的方向。在本教程中,我们将概述对于流畅和有效的用户体验至关重要的各个方面。特别地,我们将从若干A/B测试中呈现我们的见解。本教程将帮助RecSys社区的研究人员和从业者更深入地了解在线视频和音乐娱乐业务中与推荐系统应用相关的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信