Drinfeld’s lemma for diamonds

P. Scholze, Jared Weinstein
{"title":"Drinfeld’s lemma for diamonds","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.19","DOIUrl":null,"url":null,"abstract":"This chapter addresses Drinfeld's lemma for diamonds. It proves a local analogue of Drinfeld's lemma, thereby giving a first nontrivial argument involving diamonds. This lecture is entirely about fundamental groups. A diamond is defined to be connected if it is not the disjoint union of two open subsheaves. For a connected diamond, finite étale covers form a Galois category. As such, for a geometric point, one can define a profinite group, such that finite sets are equivalent to finite étale covers. In this proof, the chapter uses the formalism of diamonds rather heavily to transport finite étale maps between different presentations of a diamond as the diamond of an analytic adic space.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter addresses Drinfeld's lemma for diamonds. It proves a local analogue of Drinfeld's lemma, thereby giving a first nontrivial argument involving diamonds. This lecture is entirely about fundamental groups. A diamond is defined to be connected if it is not the disjoint union of two open subsheaves. For a connected diamond, finite étale covers form a Galois category. As such, for a geometric point, one can define a profinite group, such that finite sets are equivalent to finite étale covers. In this proof, the chapter uses the formalism of diamonds rather heavily to transport finite étale maps between different presentations of a diamond as the diamond of an analytic adic space.
钻石的德林菲尔德引理
本章将讨论钻石的德林菲尔德引理。它证明了德林菲尔德引理的一个局部类似,从而给出了涉及钻石的第一个非平凡论证。这一讲完全是关于基本群的。如果一个菱形不是两个开放的子轴的不相交并,则它被定义为连通的。对于连通菱形,有限的栅格构成伽罗瓦范畴。同样的,对于一个几何点,我们可以定义一个无限群,使得有限集合等价于有限的samtale覆盖。在这个证明中,本章相当多地使用了钻石的形式主义,在钻石作为解析进进空间的钻石的不同表示之间传输有限的可变空间映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信