CSG-BRep duality and compression

J. Rossignac
{"title":"CSG-BRep duality and compression","authors":"J. Rossignac","doi":"10.1145/566282.566283","DOIUrl":null,"url":null,"abstract":"Solid Modeling technology has been traditionally divided into two camps: CSG and BRep. Constructive Solid Geometry (CSG) represents a shape as a Boolean combination of half-spaces. A Boundary Representations (BRep) specifies the location of the vertices their connectivity, and a description of how they should be interpolated or approximated by a piecewise simple surface (such as a polyhedon, a subdivision surface, a Bspline, or a trimmed implicit or parametric patch). We will investigate the equivalence between CSG and BRep (using a simple duality) and will show that for a large class of polyhedral models, both can be encoded using (3k+4)N bits, where N represents the number of primitives in a CSG model or equivalently the number of vertices in the dual BRep,nd where k represents the number of bits used to represent a quantization of each coordinate of vectors that define each either a vertex of the BRep or a plane of the CSG primitive. We will review recent advances in lossless and lossy compression and in selective and progressive transmission over error-prone connections. In particular, we will describe in detail the Corner Table, a simple and compact data structure for processing triangle meshes, and the Edgebreaker 3D connectivity compression algorithm, whose simplicity (2 pages of code) and effectiveness (between 1 and 1.8 bits per triangle) surpasses other compression techniques and standards. Details and source code may be found at http://www.gvu.gatech.edu/~jarek/edgebreaker/eb/.","PeriodicalId":286112,"journal":{"name":"International Conference on Smart Media and Applications","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Smart Media and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/566282.566283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Solid Modeling technology has been traditionally divided into two camps: CSG and BRep. Constructive Solid Geometry (CSG) represents a shape as a Boolean combination of half-spaces. A Boundary Representations (BRep) specifies the location of the vertices their connectivity, and a description of how they should be interpolated or approximated by a piecewise simple surface (such as a polyhedon, a subdivision surface, a Bspline, or a trimmed implicit or parametric patch). We will investigate the equivalence between CSG and BRep (using a simple duality) and will show that for a large class of polyhedral models, both can be encoded using (3k+4)N bits, where N represents the number of primitives in a CSG model or equivalently the number of vertices in the dual BRep,nd where k represents the number of bits used to represent a quantization of each coordinate of vectors that define each either a vertex of the BRep or a plane of the CSG primitive. We will review recent advances in lossless and lossy compression and in selective and progressive transmission over error-prone connections. In particular, we will describe in detail the Corner Table, a simple and compact data structure for processing triangle meshes, and the Edgebreaker 3D connectivity compression algorithm, whose simplicity (2 pages of code) and effectiveness (between 1 and 1.8 bits per triangle) surpasses other compression techniques and standards. Details and source code may be found at http://www.gvu.gatech.edu/~jarek/edgebreaker/eb/.
CSG-BRep二象性与压缩
传统上,实体建模技术分为两大阵营:CSG和BRep。构造立体几何(CSG)将形状表示为半空间的布尔组合。边界表示(BRep)指定顶点的连接位置,以及如何通过分段简单曲面(如多面体、细分曲面、b样条或修剪的隐式或参数补丁)插值或近似它们的描述。我们将调查之间的等价CSG和BRep(使用一个简单的二元性),将显示为一个大的类的多面模型,都可以使用(3 k + 4) N比特编码,其中N表示原语在CSG模型的数量或等同于双重BRep顶点的数量,和k代表的比特数用来表示每个坐标向量的量化定义每个顶点的BRep或一架飞机的CSG原始。我们将回顾无损和有损压缩以及在易出错连接上的选择性和渐进传输方面的最新进展。特别是,我们将详细描述角表,一个简单而紧凑的数据结构,用于处理三角形网格,以及Edgebreaker 3D连接压缩算法,其简单性(2页代码)和有效性(每个三角形1到1.8位)超过了其他压缩技术和标准。详细信息和源代码可在http://www.gvu.gatech.edu/~jarek/edgebreaker/eb/上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信