Object Detection in Aerial Images with Attention-based Regression Loss

Chandler Timm C. Doloriel, R. Cajote
{"title":"Object Detection in Aerial Images with Attention-based Regression Loss","authors":"Chandler Timm C. Doloriel, R. Cajote","doi":"10.23919/APSIPAASC55919.2022.9980311","DOIUrl":null,"url":null,"abstract":"Object detection is a computer vision technique used to identify objects that are usually present in natural scenes. However, the methods used for this case are not easily transferable to detect objects in aerial images. Objects in aerial images are mostly arbitrary-oriented, small, and in complex backgrounds compared to upright and well-focused objects in natural scenes. To effectively detect objects in aerial images, we propose a new regression loss function based on the attention mechanism through attention weights. Using the relative position of the attention weights to the bounding box, the foreground is given more attention, which highlights the target object and effectively suppresses the noise and background. Preliminary experiments are conducted on an attention-based object detector using the DOTA dataset to test the capability of attention mechanism in extracting the contextual information of objects, especially in complex environments.","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9980311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object detection is a computer vision technique used to identify objects that are usually present in natural scenes. However, the methods used for this case are not easily transferable to detect objects in aerial images. Objects in aerial images are mostly arbitrary-oriented, small, and in complex backgrounds compared to upright and well-focused objects in natural scenes. To effectively detect objects in aerial images, we propose a new regression loss function based on the attention mechanism through attention weights. Using the relative position of the attention weights to the bounding box, the foreground is given more attention, which highlights the target object and effectively suppresses the noise and background. Preliminary experiments are conducted on an attention-based object detector using the DOTA dataset to test the capability of attention mechanism in extracting the contextual information of objects, especially in complex environments.
基于注意力回归损失的航拍图像目标检测
物体检测是一种计算机视觉技术,用于识别通常存在于自然场景中的物体。然而,这种情况下使用的方法不容易转移到检测航空图像中的目标。与自然场景中垂直且聚焦良好的物体相比,航空图像中的物体大多是任意方向的、小的、背景复杂的。为了有效地检测航拍图像中的目标,我们提出了一种新的基于注意机制的回归损失函数。利用关注权值与边界框的相对位置,给予前景更多的关注,从而突出目标物体,有效地抑制噪声和背景。利用DOTA数据集对基于注意的目标检测器进行了初步实验,以测试注意机制在复杂环境下提取对象上下文信息的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信