Design and Validation of Tunable Stiffness Actuator using Soft-Rigid Combined Layer Jamming Mechanism

Seoyeon Ham, B. B. Kang, K. Abishek, HyunYong Lee, Wansoo Kim
{"title":"Design and Validation of Tunable Stiffness Actuator using Soft-Rigid Combined Layer Jamming Mechanism","authors":"Seoyeon Ham, B. B. Kang, K. Abishek, HyunYong Lee, Wansoo Kim","doi":"10.1109/RoboSoft55895.2023.10121975","DOIUrl":null,"url":null,"abstract":"This paper presents a tunable stiffness actuator with a soft-rigid combined layer jamming mechanism. The tunable stiffness actuator is aimed to be integrated into an exosuit to prevent ankle sprain and avoid or mitigate the development of chronic ankle instability. The main purpose of the soft-rigid layer jamming mechanism is to produce large stiffness with a small volume and achieve a linear stiffness characteristic. To this end, the actuator is designed to include rigid retainer pieces within the soft silicone layers, and each soft-rigid layer is jammed to induce stiffness changes. To validate the stiffness characteristics of the proposed soft-rigid actuator, a series of experiments were performed and stiffness changes were investigated for varying jamming states from unjammed to fully jammed states. Increasing the number of jamming layer effectively increased the actuator stiffness, which was consistent with expected results from the analytical model. Soft-rigid actuator's stiffness at the fully jammed state was 212.1% and 123.1% higher than the unjammed state for one-side and both sides anchored conditions, respectively. Compared to the soft actuator without the rigid retainer, the soft-rigid actuator exhibited a more linear characteristic (Pearson correlation coefficient = 0.990 and 0.997 for one-side and both sides anchored conditions, respectively). Moreover, the soft-rigid actuator achieved significantly higher stiffness than the soft actuator in all jamming states (at least 41.3% increase in each jamming state). The results suggest a potential use of the tunable stiffness actuator to develop a soft ankle exosuit with highly variable but linear stiffness characteristics.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10121975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a tunable stiffness actuator with a soft-rigid combined layer jamming mechanism. The tunable stiffness actuator is aimed to be integrated into an exosuit to prevent ankle sprain and avoid or mitigate the development of chronic ankle instability. The main purpose of the soft-rigid layer jamming mechanism is to produce large stiffness with a small volume and achieve a linear stiffness characteristic. To this end, the actuator is designed to include rigid retainer pieces within the soft silicone layers, and each soft-rigid layer is jammed to induce stiffness changes. To validate the stiffness characteristics of the proposed soft-rigid actuator, a series of experiments were performed and stiffness changes were investigated for varying jamming states from unjammed to fully jammed states. Increasing the number of jamming layer effectively increased the actuator stiffness, which was consistent with expected results from the analytical model. Soft-rigid actuator's stiffness at the fully jammed state was 212.1% and 123.1% higher than the unjammed state for one-side and both sides anchored conditions, respectively. Compared to the soft actuator without the rigid retainer, the soft-rigid actuator exhibited a more linear characteristic (Pearson correlation coefficient = 0.990 and 0.997 for one-side and both sides anchored conditions, respectively). Moreover, the soft-rigid actuator achieved significantly higher stiffness than the soft actuator in all jamming states (at least 41.3% increase in each jamming state). The results suggest a potential use of the tunable stiffness actuator to develop a soft ankle exosuit with highly variable but linear stiffness characteristics.
软硬复合层干扰机构可调刚度作动器的设计与验证
提出了一种软硬复合层干扰机构的可调刚度作动器。可调刚度致动器旨在集成到外骨骼中,以防止踝关节扭伤,避免或减轻慢性踝关节不稳定的发展。软-刚性层干扰机构的主要目的是以小体积产生大刚度,实现线性刚度特性。为此,执行器被设计为在软硅胶层内包含刚性保持件,并且每个软刚性层被卡住以诱导刚度变化。为了验证所提出的软刚性执行器的刚度特性,进行了一系列的实验,研究了从无卡到完全卡的不同干扰状态下的刚度变化。增加干扰层数可以有效地提高驱动器的刚度,这与解析模型的预期结果一致。软刚性执行器在完全卡死状态下的刚度分别比单侧锚固和双侧锚固状态下的非卡死状态高212.1%和123.1%。与没有刚性固位器的软执行器相比,软-刚性执行器表现出更强的线性特征(单侧锚定和双侧锚定的Pearson相关系数分别为0.990和0.997)。此外,在所有干扰状态下,软-刚性执行器的刚度都明显高于软执行器(每种干扰状态下至少增加41.3%)。结果表明,可调刚度致动器的潜在用途是开发具有高度可变但线性刚度特性的软踝外服。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信