dTrust: A Simple Deep Learning Approach for Social Recommendation

Quang-Vinh Dang, C. Ignat
{"title":"dTrust: A Simple Deep Learning Approach for Social Recommendation","authors":"Quang-Vinh Dang, C. Ignat","doi":"10.1109/CIC.2017.00036","DOIUrl":null,"url":null,"abstract":"Rating prediction is a key task of e-commerce recommendation mechanisms. Recent studies in social recommendation enhance the performance of rating predictors by taking advantage of user relationships. However, these prediction approaches mostly rely on user personal information which is a privacy threat. In this paper, we present dTrust, a simple social recommendation approach that avoids using user personal information. It relies uniquely on the topology of an anonymized trust-user-item network that combines user trust relations with user rating scores. This topology is fed into a deep feed-forward neural network. Experiments on real-world data sets showed that dTrust outperforms state-of-the-art in terms of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) scores for both warm-start and cold-start problems.","PeriodicalId":156843,"journal":{"name":"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2017.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Rating prediction is a key task of e-commerce recommendation mechanisms. Recent studies in social recommendation enhance the performance of rating predictors by taking advantage of user relationships. However, these prediction approaches mostly rely on user personal information which is a privacy threat. In this paper, we present dTrust, a simple social recommendation approach that avoids using user personal information. It relies uniquely on the topology of an anonymized trust-user-item network that combines user trust relations with user rating scores. This topology is fed into a deep feed-forward neural network. Experiments on real-world data sets showed that dTrust outperforms state-of-the-art in terms of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) scores for both warm-start and cold-start problems.
dTrust:用于社交推荐的简单深度学习方法
评级预测是电子商务推荐机制的一项关键任务。最近在社交推荐方面的研究通过利用用户关系来提高评级预测器的性能。然而,这些预测方法大多依赖于用户的个人信息,这对隐私构成了威胁。在本文中,我们提出了dTrust,一种简单的社交推荐方法,避免使用用户个人信息。它唯一依赖于匿名信任-用户-项目网络的拓扑结构,该网络将用户信任关系与用户评级分数结合在一起。这种拓扑结构被输入到深度前馈神经网络中。在真实世界数据集上的实验表明,dTrust在热启动和冷启动问题的均方根误差(RMSE)和平均绝对误差(MAE)得分方面都优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信