Pruning neural networks by minimization of the estimated variance

P. Morgan, B. Curry, M. Beynon
{"title":"Pruning neural networks by minimization of the estimated variance","authors":"P. Morgan, B. Curry, M. Beynon","doi":"10.1051/EJESS:2000104","DOIUrl":null,"url":null,"abstract":"This paper presents a series of results on a method of pruning neural networks. An approximation to the estimated variance of errors, V, is constructed containing a supplementary parameter, a - the estimated variance itself being the limit of the function, V, as a tends to zero. The network weights are fitted using a minimization algorithm with V as objective function. The parameter, a, is reduced successively in the course of fitting. Results are presented using synthetic functions and the well-known airline passenger data. We find, for example, that the network can discover, in the course of being pruned, evidence of redundancy in the variables.","PeriodicalId":352454,"journal":{"name":"European Journal of Economic and Social Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Economic and Social Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/EJESS:2000104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a series of results on a method of pruning neural networks. An approximation to the estimated variance of errors, V, is constructed containing a supplementary parameter, a - the estimated variance itself being the limit of the function, V, as a tends to zero. The network weights are fitted using a minimization algorithm with V as objective function. The parameter, a, is reduced successively in the course of fitting. Results are presented using synthetic functions and the well-known airline passenger data. We find, for example, that the network can discover, in the course of being pruned, evidence of redundancy in the variables.
通过最小化估计方差来修剪神经网络
本文给出了一种神经网络剪枝方法的一系列结果。估计误差方差V的近似值包含一个补充参数a——估计方差本身是函数V的极限,当a趋于零时。以V为目标函数,采用最小化算法拟合网络权值。在拟合过程中,参数a依次减小。利用综合函数和知名航空公司乘客数据给出了结果。例如,我们发现,在被修剪的过程中,网络可以发现变量中冗余的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信